दक्षिण मध्य रेलवे South Central Railway

MULTIPLE CHOICE QUESTION BANK TELECOM

April 2021

बहु विद्या क्षेत्रीय प्रशिक्षण संस्थान – सिगनल व दूरसंचार परिसर मौला-अली / सिकंदराबाद

Multi Disciplinary Zonal Training Institute – S&T Campus

Moula-Ali / Secunderabad

INDEX

SI. No.	TOPIC	No. of Questions	Page No.
1.	ST-01 : General	30	1
2.	ST-03b : Measuring Instruments Including OFC equipments, use of Hand and Portable Tools, Cable Route Locators	30	4
3.	ST-04 : Power Equipments, Cells and Battery	50	7
4.	ST-05 : Basic Electricity and Magnetism	60	11
5.	ST-06 : Safety in Train Operation, S.O.D and D.M.	30	16
6.	ST-07 : Computer Appreciation	50	19
7.	ST-08 : Telecom Cables	100	23
8.	ST-09 : Electronic Components	40	31
9.	ST-10 : Telephone Instruments	50	34
10.	ST-45 : Passenger Ameinitis (PA, IPIS, PIS, & GPS clock)	100	38
11.	ST-46 : Electronic and IP Exchange	80	46
12.	ST-47 : Tetra, GSM-R and LTE	60	52
13.	ST-48 : Rail Net, Wi-Fi system, PRS, UTS & FOIS	160	58
14.	ST-49 : Train Traffic Control	80	71
15.	ST-50 : OFC, SDH & Equipments	220	77
16.	ST-51 : Amplifiers, Oscillator & Wave Propogation	40	94
17.	ST-52 : Digital Electronics	50	97
18.	ST-53 : Emergency Commuication	30	101
19.	ST-54 : Basics Of Satellite Technologies, VSAT & Disaster Management Communication	50	104
20.	ST-55 : IP based video surveillance system & ISS	30	109
21.	ST-56 : Radio Communication	100	112
22.	ST-57 : Advance IP network, NMS & Security of Network	100	121
23.	ST-65 Stores, Tenders and Contracts	39	129
24.	Rajbasha	50	133
		1629	

दक्षिण मध्य रेलवे South Central Railway

बहु विद्या क्षेत्रीय प्रशिक्षण संस्थान – सिगनल व दूरसंचार परिसर, मौला-अली / सिकंदराबाद

Multi-Disciplinary Zonal Training Institute - S&T Campus, Moula-Ali / Secunderabad

ST-01: GENERAL

1)	Classification of Railway		ies under HOER are c. 4	e d. 1	()
2)	In HOER an employee in	-	-	tial Intermitten	() t
3)	An employee in essentia		egory is c. WTM	d. Helper	()
4)	In continuous category a a. 48hrs/week b. s	. ,	ting hours is c. 32hrs/week	d. 60hrs/week	()
5)	Running staff comes und a. Excluded b. Inter		/? tinuous d. Essent	al Intermittent	()
6)	Max. working hours/weel		e in essential intermit c. 72hrs/week	tent category. d. 42hrs/week	-
7)	Attenders in waiting room a. Excluded b. i		hich category c. essential intermit	tent d. Inter	() nsive
8)	An employee works 42 h comes under a. Excluded b.	•	d with 30 consecutiv		t () tinuous
9)	SF-1 (Standard Form) is a. To place under susper c. both a & b	nsion	loyee b. revocation of sus d. None	pension	()
10)	SF-8 is for in DAR is a. Issuing a charge sheet b. For appointment of an c. For appointment of a p d. Both b & c.	enquiry officer	on proceedings		()
11)	SF-5 is proposed to take a. Major penalty b.		for imposition of c. Revocation	d. Suspension	() n.

12)	Who can avail patern	ity leave in Indian Ra	ailways?		()
	a. Male employee		b. Women employe	е		
	c. both a & b		d. trainee employee	;		
13)	Censure is	penalty.			()
	a. Major	b. Minor	c. both a & b	d. none		
14)	SF-11 is	penalty.			()
	a. Minor	b. Major	c. both a & b	d. none		
15)	no. of privileg	ge passes/year for er	mployee having more	e than 5 years	of	
	service		_		()
	a. 4	b. 1.	c. 3	d. 2		
16)	Maternity leave is gra	inted for day	S.		()
	a. 180 days	b. 90 days	c. 270 days	d. 360 days		
17)	No. of stipendiary lea	ves for an apprentice	e in IR.		()
	a. 8	b. 10.	c. 16	d. 15		
18)	No of casual leaves f	or an railway employ	ee of open line in a y	/ear.	()
	a. 8	b. 10	c. 11	d. 15.		
19)	Hindi divas is on				()
	a. 22 August	b. 14 September	c. 12 June	d. 14 Februa	ry	
20)	How many languages	s is incorporated in 8	th schedule?		()
	a. 8	b. 12	c. 16	d. 10		
21)	Which region is Non-	speaking Hindi			()
	a. A region	b. B region	c. C region	d. both a & b		
22)	No's of PTO's can be	availed by a Railwa	y employee in a yeaı	ris	()
	a. 3	b. 4	c. 2	d. 6		
23)	A Railway employee	maximum how many	LAP's can be accur	nulated in his		
·	service	-			()
	a. 50	b. 200	c. 250	d. 300		
24)	Child care leave (CC	L) is granted for how	many years?		()
	a. 1 year	b. 2 years	c. 3 years	d. 4 years		
25)	Per year how many L	AP leaves is credited	d into employee acco	ount?	()
	a. 15 days	b. 20 days	c. 25 days	d. 30 days		
26)	Per year how many L	.HAP leaves is credit	ed into employee ac	count?	()
,	a. 15 davs	b. 20 davs	c. 25 davs	d. 30 davs	•	•

27)	Duty pass is issued in	n the form of			(
	a. metal pass	b. card pass	c. check pass	d. all		
28)	Normally leave shoul	d not be refused in p	articular during ye	ears of service	e (,
	a. 10 years	b.20 years	c. 15 years	d. 25 years		
29)	Time limit for submiss	sion of claim of trave	lling allowance (TA)	is days		
	succeeding the date	of completion of jour	ney		(,
	a. 30 days	b. 60 days	c. 90 days	d. 120 days		
30)	Who is the competen	t authority to approve	e 3 rd chance to ward	/ widow for		
	appointment on comp	passionate grounds			(,
	a. GM	b. AGM	c. PCPO	D. DRM		

ANSWERS KEY

1	2	3	4	5	6	7	8	9	10
С	а	d	а	С	С	С	b	а	С
11	12	13	14	15	16	17	18	19	20
а	а	b	а	С	а	С	b	b	С
21	22	23	24	25	26	27	28	29	30
С	b	d	b	d	b	đ	а	b	а

ST-03b: MEASURING INSTRUMENTS

1)	In a measurement system the transducer	is the	()
	a. Input element	b. Processing device		
	c. Signal conditioning device	d. Output element		
2)	The basic principle of a D'Arsonval instruit a. Moving Iron instrument c) Induction instrument	ment is the same as that of a b. Repulsion instrument d) Moving coil instrument	()
3)	The internal resistance of an ammeter mua) High sensitivity c) Max. voltage drop across the meter	b) High resolution	cuit)
4)	Which of the following meter has a linear a) Thermocouple b) Moving Iron	scale c) Hot wire meter d) PMMC	()
5)	A measure of the reproducibility of the measure a) Accuracy b) Fidelity	easurement is known as c) Precision d) Resolutior	(n)
6)	Digital Voltmeter has 3 & ½ digit display, a) 999 b) 9.99	the one volt range can be read up c) 1.999 d) 0.1999	to()
7)	In the PMMC instrument's Torque equation a) Cross section area c) Magnetic field intensity	on equal to BANI , I stands for b) Current d) Turns	()
8)	If the voltmeter resistance is increased the voltmeter will a) Increase b) Decrease c) Be independent of voltmeter resistance d) Increase or decrease depending upon	.	()
9)	An instrument has a sensitivity of 1000 of instrument will have internal resistance of a) 10 ohms b) 1000 ohms		()
10)	A voltmeter using a 50 micro ampere met a) 20 Kilo ohms per volt c) 50 Kilo ohms per volt	er has a sensitivity of b) 2000 ohms per volt d) 20 Mega ohms per volt	()
11)	The basic A to D converter used in a digit a) Phase converter c) voltage to time converter	tal volt meter is b) Current converter d) Frequency converter	()
12)	The error of an instrument is normally given a) Measured value b) Full scale value	•	(lue)

MDZTI (S&T) MLY / SCRly

13)	Measurement cycle p	performed by A / D c b) Read	onverters c) Integrate	d) All	()
	a) Auto Zero	,	,	,	,	
14)	The unit of absolute pa) dBm	oower in logarithmic b) dBr	value of an electrical c) dB	signal is – d) dBrnc	()
15)	The power output of	a amplifier is +30dBr	m, if the power outpu	t is made dou	ble,	
	the value of the outpu	·) . 00 ID	I) 00 ID	()
	a) +33dBm	b) +27dBm	c) +60dBm	d) -30 dBm		
16)	If the power input of a	•	and the gain of the a	mplifier +60dE	3, the	`
	output power of the a a) +33dBm	b) +27dBm	c) +60dBm	d) 0dBm	()
17\	The Return Loss of a	•	,	,	20	
17)	to the power transmit		•	ick itotti tite ili	()
	a) Impedance Miss n				•	,
	b) Impedance Miss n	natch between cable	and load			
	c) Impedance Miss m	_		adamaa af aab	do etic	into
	d) Impedance misma	_	in characteristic imp	edance of car	ne at jo	ints
18)	Bridge megger is use		ao aobla		()
	a) Identification of lovb) Finding loop resist		le Cable			
	c) Contact faults with	•				
	d) All of the above					
19)	Ac voltage is required	d for earth testing be	cause ofnature o	of earth.	()
	a) Resistive	b) Electrolytic	c) capacitive	d) inductive		
20)	Psophometric.voltage	e is ameasuren	nent of noise presen	t on a transmi	ission	
	line across a telepho			–	()
	a) logarithmic	b) Linear	c) Indirect	d) Reverse		
21)	The deflection in Meg	gger meter is determ	ined by theof c	urrent in Curre	ent	
	and Potential coils.	b) Product	c) Ratio	d) Reverse	()
,	a) Addition	•	,	,		
22)	Visual fault locator a or macro bending.	llowsidentification	of fiber cable faults	as breaks, mid	cro ′	١
	a) Detailed	b) Differed	c) Instant	d) delayed	(,
231	•	•	,	,	0	
20)	VFL uses a bright the .fiber that allows				()
	a) Yellow			d) Blue	•	,

24)	OTDR can be charac	cterized similar to opt	ical		()
	a) Radar	b) Sonar	c) Detector	d) Amplifier		
25)	Reflection is tens of t	housands of times g	reater in power level	than the back	kscatte	-
					()
	a) Internal	b) Fresnel	c) Total	d) External		
26)	Pulse width is the wid	dth of the optical puls	se from the OTDR th	at is		
	in a time frame.				()
	a) scattered	b) Refracted	c) Reflected	d) generated		
27)	Optical L	_ight Source provide	s with an inbuilt optio	al attenuator,		
	to vary the attenuation	on of the output level	typically in 0.1 steps	-	()
	a) -3 to -6dB	b) 0 dB	c) 0-6 dB	d) 6-10 db		
28)	W	hich pulse width do	use to troubleshoot	a long fiber ru	ın	
	on an OTDR?				()
	a) Longest	b) Unchanged	c) Medium	d) Shortest		
29)	Device used to test a	i fiber optics splice lo	ess is		()
	a) Spectrum analyze	r	b) Oscilloscope			
	c) Optical power met	er	d) Field strength me	eter		
30)	TMS consists of	meter			()
	a) oscillator	b) level meter	c) both	d) none		

<u>ANSWERS KEY</u>

1	2	3	4	5	6	7	8	9	10
а	d	d	d	С	С	b	b	d	а
11	12	13	14	15	16	17	18	19	20
С	b	d	а	а	d	d	d	b	b
21	22	23	24	25	26	27	28	29	30
С	С	С	С	b	С	С	d	С	O

ST-04: POWER SUPPLY, CELLS & BATTERY

1)	Function of separators a. over charging	s in Lead acid cell is b. short-circuit)
2)	Capacity of any Lead <i>a</i> . Ampere Hours)
3)	While charging LA cell a. partially discharged c. partially charged	_	sing indicates that t b. fully discharged d. fully charged	he cell is ()
4)	Active material on pos a. Lead peroxide	•		d. Lead)
5)	is an instrume a. Thermometer c. Mass flow meter	ent used to measure	the Specific gravity b. Specific gravity n d. Hydrometer)
6)	The material used for a. Lead Calcium alloy c. Lead Sulphate alloy		e free Lead Acid bat b. Lead Peroxide al d. Lead Zinc alloy)
7)	High rate of charging of a. Sulphation c. High density of elec		to problem ofi b. Loss of Capacity d. Buckling	•)
8)	AGM, in VRLA batterional Absorbed Gas Mat c. Absorbed Glass Ma		b. Associated Glass d. Associated Gas	s Mat)
9)	The VRLA / SMF-LA ba. Constant Voltage was c. Constant Voltage d. Regulated Voltage	ith voltage un-regula	ated	voltage. ()
10)	To avoid lead corrosio applied. a. Petroleum jelly	•	_	has to be (d. SAE-2T oil)
l1)	Internal short circuit in a. Gassing from cell c. Warm when touched		y b. High specific gra d. Sulphation	(vity of lectrolyte)
12)	Lead Acid cell can be a. 1.70	discharged up to vo b. 1.80	ltage of c. 1.85	d. 1.9)
13)	In VRLA cell/battery tha. Recombination princ. Adding very low am	ciple	distilled water is by _c b. Adding distilled v d. Keep the cell in b	vater)

14)	Leaving the LA batter a. Internal short circuit	,	ndition causes c. Loss of electrolyt	e d. She	(edding)
15)	Voltage of a fully chara. 2.1	rged rechargeable A b. 1.5	lkaline cell is c. 1.0	d. 1.2	()
16)	The electrolyte used i a. KOH	n case of Alkaline co b. H ₂ SO ₄	ell is c. MnO ₂	 d. Zn	()
17)	The float charging vol a. 2.10	tage of a VRLA cell b. 2.15	is c. 2.25	d. 2.30	()
18)	The operating temper battery	rature of a battery inc	creases then the cap	acity of	()
	a. Increasesc. Remains same		b. Decreases d. Both (a) & (b) are	e correct		
19)	K-factor in LA cells in a. Availability of cell calls	apacity at different lo			()
	b. Availability of cell cac. Availability of cell cad. Availability of cell ca	apacity at different d	lischarge rates and e	_		
20)	Temperature correction operation ata. 0		not required when th	e battery is in d. 27	()
21)	EPV of an Alkaline ce a. 1.0		c. 1.8	d. 2.0	()
22)	Recommended type of a. Constant current & c. Constant current &	regulated voltage		=		
23)	Gravimetric Energy d a. Li-ion		rechargeable	e batteries. d. VRLA	()
24)	Maximum allowable of is a. 50%		battery, as defined b	oy manufactui d. 80%	rer, ()
25)	Rate of Trickle chargi a. 1 mA/AH	ng is			()
26)	The codal life of re-ch	nargeable batteries u	sed in S&T departm	ent is		,
	months a. 24	b. 36	c. 48	d. 60	()
27)	The maximum tempe exceed °C. a. 27	rature allowed durino b. 30	g charging of LA batt c. 40	ery shall not	()

28)	Inverter unit is for cor	nversion of			()
	a. DC to DC	b. AC to DC	c. DC to AC	d. AC to AC		
29)	Boost Charging Volta a. 2.2	ige of conventional L b. 2.3	A battery is c. 2.4	· d. 2.5	()
30)	The approximate rational 1:2	o of acid to distilled v b. 1:3	water for conventiona c. 1:4	al LA battery is d. 1:5	s()
31)	As defined by manufa	acturer, charging cur	rent is limited to	% of nom	ninal	
	capacity of battery in	constant potential w	rith current limited ch	arging,	()
	a. 1.	b. 2.	c. 3.	d. 40		
32)	Charging voltage of \	/RLA or SMF battery	/ is	·	()
	a. 2.1	b. 2.2	c. 2.3	d. 2.5		
33)	During initial charging	g of convential LA ce	ells, the voltage of ce	ll shall be set		
	to				()
	a. 2.3	b. 2.4	c. 2.6	d. 2.7		
34)	While charging initiall be supplied to the ba					y
	current.	h All aggaeity/40	- Allit-//45	d Allegages	()
	a. AH capicity/5		c. AH capacity/15	а. Ан сарасі	ty/20	
35)	Unit of Capacity of a			-1 11A	()
	a. AH	b. A	c. H	d. HA		
36)	In C /10 discharge ra			_	()
	a. Volts	b. Amps	c. Hours	d. Constant		
37)	In Automatic Battery a. BJT	charger the output c b. IGBT	ontrolling device is_ c. UJT	d. SCR	()
38)	In Automatic battery of a. Transformer	charger the gate puls b. control circuit	ses for SCR's is gen c. SCR	erated by d. UJT	()
39)	The efficiency of Line	ear type battery char	ger is a SMPS b	attery charger	()
,	a. same as of	b. higher than	c. less than	, ,	•	,
40)	In SMPS battery char	rger, isolation from A	C mains is		()
,	a. very high	b. very low		d. partial	`	,
41)	Out put side of a cha	rger is inti	roduced to reduce th	e change in th	е	
,	charging current			Ü	()
	a. Load	b. Ballast resistor	c. Battery	d. Capicitor		
42)	MOV is a				()
-	a. Capacitor		b. Reverse Voltage	protection		
	c. Fuse		d. Surge suppresso	or		

43) S	pecification	of 48VD0	C auto/ma	anual bat	tery char	ger for S	&T equip	ment is	,
	IRS.TC.72	_				.TC.86/20 SO/SPN/			()
,	a 48V DC a 2.0 to 2.3		ual batte b. 1.8 to 2			oltage rar o 2.5	-	_ V/Cell. .8 to 2.5	()
a	a 48V DC a Number of Number of	SMRs		ry charge	b. Num	dicates_ nber of ce nber of Lo	ells		()
46) Ir	a automati	c battery	charger,	automatio	c change	over fror	n float to	boost mo	ode
	nd vice vers load voltag			•		 I. battery	current		()
,	ower plants Thyristor c			cope for r Ferro-res		•	n are Linear	d. SM	() PS
•	olar panel u . 24 V D.C		C gate ha b. 48 V D		oltage c. 12 V	D.C	d. 18	8 V D.C	()
,	harging met				is c. Tripl	e chargir	ng d.Fl	loat char	() ging
•	ener diode i . Current		sre b. Voltage	•	c. Pow	er	d. ei	mf	()
			<u>A N</u>	SWEF	RS K	<u>E Y</u>			
1	2	3	4	5	6	7	8	9	10
b	а	d	а	d	а	d	С	b	а
11	12	13	14	15	16	17	18	19	20
С	С	а	b	d	а	b	b	С	d
21	22	23	24	25	26	27	28	29	30
а	С	b	d	а	С	d	С	С	b
31	32	33	34	35	36	37	38	39	40
b	С	d	С	а	С	d	b	С	а
41	42	43	44	45	46	47	48	49	50
b	d	b	а	а	С	d	d	а	b

ST-05: BASIC ELECTRICITY AND MAGNETISM

1)	Resultant resistance (a) Series	will increase when re (b) parallel	esistors are connecte (c) series and parall		(d) all	()
2)	Resultant resistance (a) Series	will decrease when ro (b) parallel	esistors are connecte (c) series and parall		(d) all	()
3)	Condensers of same (a) becomes double (c) will not change	capacity are connec	ted in parallel, the re (b) become half (d) become zero	sultant '	value	()
4)	Condensers of same (a) becomes double (c) will not change	capacity are connec	ted in series, the resi (b) become half (d) become zero	ultant va	alue	()
5)	The unit for capacitar (a) Volts	nce is (b) Newton	(c) Coloumb		(d) Far	(ads)
6)	$50~\Omega~\&~50~\Omega~resistors$ (a) $75~\Omega$	s are connected in se (b) 50 Ω	eries the resultant Re (c) 100 Ω		e is (d) 25	(Ω)
7)	$50~\Omega~\&~50~\Omega$ resistors (a) $50~\Omega$	s are connected in pa $(b)~100~\Omega$	rallel the resultant R (c) 25 Ω		ce is (d) 150	(Ω Ω)
8)	To measure current ii (a) Parallel	n a circuit, Ammeter i (b) Series	is connected in (c) Series & Parallel		(d) No	(ne)
9)	To measure voltage i (a) Parallel	n a circuit, Voltmeter (b) Series	is connected in (c) Series & Parallel		(d) No	(ne)
10)	To measure current in is used (a) Ammeter				 (d) No	(ne)
11)	converts AC to	DC. (b) Filter	(c) Rectifier		(d) Inv	-)
12)	In bridge rectifier (a) 1	no. of diodes are (b) 2	used. (c) 3	(d) 4		()
13)	will not chanç (a) Voltage	ge in Transformer (b) Current	(c) Resistance	(d) Fre	quenc	(y)
14)	In step up transforme secondary side (a) More than	r the voltage on prim (b) Less than		ne volta (d) Nor		()

15)	In step down transfor	mer the voltage on p	rimary side is	the voltage o	n	
,	secondary side			_)
	(a) More than	(b) Less than	(c) Equal to	(d) None	•	
16)	In 1:1 transformer the	voltage on primary	side ist	he voltage on		
	secondary side				()
	(a) More than	(b) Less than	(c) Equal to	(d) None		
17)	Ohm's Law is				()
	(a) V = I R	(b) I = V / R	(c) R = V / I	(d) All		
18)	In an electrical circuit	the Power =			()
	(a) V x I	(b) I ² / R	(c) V^2/R	(d) All		
19)	In an electrical circuit	at constant resistan	ce, if Voltage is incr	eased, Current	t ()
	(a) decreases	(b) increases	(c) remains consta	nt (d) No	ne	
20)	In an electrical circuit	at constant resistance	ce, if Voltage is dec	reased Curren	t ()
,	(a) decreases		(c) remains consta		-	,
21)	In an electrical circuit	at constant Voltage,	if Resistance is ded	reased Currer	nt()
,	(a) decreases	(b) increases			•	,
22)	In an electrical circuit	at constant Voltage,	if Resistance is inc	reased Curren	t ()
,	(a) decreases	(b) increases	(c) remains consta		•	,
23)	The unit for Power is				()
	(a) Newton	(b) Watts	(c) Joules	(d) Hertz		
24)	The unit for frequency	/ is			()
	(a) Newton	(b) Watts	(c) Joules	(d) Hertz		
25)	Transformer works or	n principl	е		()
	(a) Mutual induction		(b) Electrostatic inc	luction		
	(c) Self induction		(d) None			
26)	In a transformer there	will be	between AC voltag	es of primary o	coil and	
	secondary coil				()
	(a) decrease in freque	-	(b) increase in freq	uency		
	(c) no change in frequ	uency	(d) None			
27)	In every magnet		esent		()
	(a) 3 (b) 2	(c) 4	(d) 6			
28)	When North pole of a	magnet brought nea	arer to South pole of	other magnet	()
	(a) Repels	_	(b) Attracts			
	(c) Neither attracts no	or repels	(d) None			

29)	When South pole of a (a) Repels (c) Neither attracts no		arer to South pole of (b) Attracts (d) None	other magn	et ()
30)	An electrical generator (a) Electrical energy in (b) Mechanical energy in (c) Electrical energy in (d) Sound energy into	nto Mechanical ener y into Electrical ener nto Sound energy	••		()
31)	In a DC generator (a) copper losses (c) Mechanical losses		(b) Magnetic losses (d) All the above		()
32)	According to Faraday cuts magnetic flux (a) induced e.m.f.		agnetic induction, wh (c) Light	nenever a co (d) N	()
33)	Electrical energy may (a) Mechanical	be converted into _ (b) Sound	energy (c) Chemical	(d) A	(JI)
34)	In a stabiliser, if input (a) increases	voltage increases w (b) decreases	rithin the range the o (c) remains constar		•)
35)	In a stabiliser, if input (a) increases	voltage decreases v	vithin the range the o		•)
36)	What will be the curre with 24 V DC (a) 60 mA	ent in a QN1 relay of (b) 50 mA	coil resistance 400 c	ohms is oper (d) 30 Ma	ated ()
37)	What will be the curre with 24 V DC (a) 80 mA	ent in a QNA1 relay o (b) 90 mA	of coil resistance 208 (c) 100 mA	ohms is ope	erated ()
38)	is used to proto	ect electrical/electro (b) Resistor	nic equipments from (c) Inductor	high current (d) None	s ()
39)	The Power factor is (a) the ratio of true(we (b) the ratio of appare (c) product of true pow (d) None	ent power to true por	wer		()
40)	Capacitive reactance (a) 2πfc	$X_c =$ (b) 1 / 2πfc	(c) 2πfL	(d) 1 / 2πfL	()

41)	Inductive reactand	ce X _L =			()
	(a) 2πfc	(b) 1 / 2πfc	(c) 2πfL	(d) 1 / 2πfL		
42)	Capacity of the tra	nsformer is measure	d in		()
	(a) Volts	(b) Amperes	(c) VA	(d) he	rtz	
43)	shall be	given to transformer			()
	a) DC Voltage onl	y	(b) AC V	oltage only		
	(c) Either AC or D	C voltages	(d) None			
44)	Turns ratio of the	transformer =			()
	(a) $N_2/N_1 = V_2/V_1$	$_{1}=I_{1}/I_{2}$	(b) N ₁ / N	$I_2 = V_2 / V_1 = I_2 / I_1$		
	(c) $N_2 / N_1 = V_1 / V$	$_{2}=I_{2}/I_{1}$	(d) N ₁ / N	$I_2 = V_1 / V_2 = I_2 / I_1$		
45)	The transformer w	vill not work for DC vo	ltages due to		()
	a) constant voltag	е	(b) const	ant current		
	(c) constant resist	ance	(d) const	ant flux		
46)	CVT / AVR works	in region			()
	(a) active	(b) magnetic satu	uration (c) passi	ve (d) cu	t-off	
47)	CVT means				()
	(a) Constant volta	ge transformer	(b) curre	nt voltage transfor	mer	
	(c) Continous vari	able transformer	(d) None			
48)	In capacitor filter,	as the load current in	creases then ripple	will	()
	(a) increase	(b) decrease	(c) same	(d) nil		
49)	In a bridge rectifie	r, how many diodes v	vill conduct in a hal	f cycle	()
	(a) 1 diode	(b) 2 diodes	(c) 3 diodes	(d) 4 diodes		
50)	Resistance x Cap	acitance =			()
	(a) Charging time	of capacitor	(b) Discharging	time of capacitor		
	(c) Both a & b		(d) None			
51)	For 230 V AC, 50	Hertzs the time perio	d of each half cycle	is	()
	(a) 20 m sec	(b) 30 m sec	(c) 10 m sec	(d) 40 m sec		
52)	Forward voltage d	rop of a silicon diode	is volts		()
	(a) 3.7	(b) 1.7	(c) 2.7	(d) 0.7		
53)	Zener diode gives	s voltage			()
-		(b) varying voltag	ge (c) both a & b	(d) None		-
54)	Zener diode works	s in region			()
,		passive (c)	cut-off (d) reverse breakdo	wn	,

55)	For inductive load, po	wer factor is			()
	(a) leading	(b) lagging	(c) 0.6	(d) 0.7		
56)	For capacitance load	, power factor is			()
	(a) leading	(b) lagging	(c) 0.6	(d) 0.7		
57)	converts DC	voltage to AC voltag	е		()
	(a) Rectifier	(b) Inverter	(c) Amplifier	(d) Transfor	mer	
58)	An opto coupler conv	erts			()
	(a) Electrical energy t	o light energy	(b) Electrica	l energy to sound		
	(c) Electrical energy t	o mechanical energy	/ (d) Electrica	l energy to chemic	al ener	gу
59)	The main application	of the Opto coupler	is to		()
	(a) Isolate two circuits	3	(b) combine t	wo circuits		
	(c) combine three circuits		(d) combine four circuits			
60)	Capacitor stores	energy			()
	(a) mechanical	(b) electrical	(c) light	(d) chemical		

ANSWERS KEY

1	2	3	4	5	6	7	8	9	10
а	b	а	b	d	С	С	b	а	С
11	12	13	14	15	16	17	18	19	20
С	d	d	b	а	С	d	d	b	а
21	22	23	24	25	26	27	28	29	30
b	а	b	d	а	С	b	b	а	b
31	32	33	34	35	36	37	38	39	40
d	а	d	С	С	а	d	а	а	b
41	42	43	44	45	46	47	48	49	50
С	С	b	d	d	b	а	а	b	С
51	52	53	54	55	56	57	58	59	60
С	d	а	d	b	а	b	а	а	b

ST- 06: DISASTER MANAGEMENT, SCHEDULE OF DIMENSIONS, SAFETY IN TRAIN OPERATION

1)	Disaster is a sudden,	calamitous event brii	nging great damage,	to life	
	and property.			()
	a) loss,	b) destruction	c) devastation	d) All	
2)	A disaster is a situation	on in which the comm	nunity is of coping ι	.p. ()
	a) incapable	b) Ability	c) Capable	d) none	
3)	Types of	disasters comes unc	ler Major natural.	()
	a) Floods	b) earth quack	c) Cyclone	d) All	
4)	Types of	disaster comes unde	-	()
	a) War b) C	Chemical pollution	c) Setting of fire	d) All	
5)	_	s defined as a major	train accident leading to _	for	
	a long period.a) heavy causalities a	and disruption to traff	ic b) Loss of railway	(employee)
	c) Loss due to miscre	•	d) none	employee	
6)	•		, gers comes under which cl	ass ()
0)	a) A-2	b) A-3	c) A-1	d) A-4	,
7)	Fire or Explosion in a	train carrying passer	ngers comes under which	class ()
	a) B-1	b) B-2	c) B-3	d) B-4	
8)	Trains NOT carrying p	assengers running i	nto road traffic comes und	er which	
	class			()
	a) C-3	b) C-2	c) C-1	d) C-4	
9)		who is having autho	rity to declare an incident	,	
	disaster. a) GMs b) AG	Me c) CSOs (wh	nen GM/AGM are not avail	(able) d) All)
10\	,	, , ,		, ,	١
10)	Measures put in place a) Mitigation	b) Preparedness	c) Response	d) All)
11)	Communication netwo	, ,	, .	()
'''	a) S & T department	on is provided at de	b) Operating department	•	,
	c) Security departmen	nt	d) Engineering departme	nt	
12)	PT set available on t	rains carrying goods	with	()
	a) Both	b) Break van	c) Loco motive	d) None	
13)	Walkie Talkie sets ava	ailable with		()
	a) Driver of train	b) Guard of train	c) Both	d) None	

14)	The target time for to Hooter is	urning out of ARMV in	day from the time of	f sounding of	()
	a) 15 minutes	b) 25 minutes	c) 30 minute	s d) 45	ر minuets	•
15)	The target time for to of Hooter is a) 15 minutes	urning out of ARMV in b) 25 minutes	night from the time o	_	(minuets)
\	,	,	·	•	midet	,
16)	siren is	urning out of ART in da		-	()
	a) 15 minutes	b) 25 minutes	c) 30 minute	s d) 45	minuet	S
17)	The target time for to siren is	urning out of ART in ni	ght from the time of	sounding of	()
	a) 15 minutes	o) 25 minutes	c) 30 minute	es d) 45	minuet	S
18)	The ART equipment	's are to be periodicall	y tested by nominate	ed staff to		
	ensure their satisfacta) Once in 15 days c) Once in Three mo	tory working at all time	es is b) Once in a month d) None		()
10)	,		,	T/Detr	,	١
19)	a) Once in 15 days c) Once in Three mo	s are to be periodicall nths	b) Once in a month d) None		()
20)	Every ART shall hav	e nominated telecom	staff the in charge sh	all generally b	e()
	a) SSE b) Jl	E c) Anyone w	ho is in charge	d) both		
21)	To handle train accid	dents a High Level con b) 2002/2003	nmittee was form in t c) 2003/2004	he year d) 2006/2007	()
22)	Initial action taken as	s the disaster takes pla	ace is called		()
,	a) Response	b) Recovery	c) Both	d) None	•	,
23)	Indian Railways was	managing disaster be	efore the forming of I	HLC as per	()
	a) Accident manual	1992	b) Accident manual	1993	`	,
	c) Accident manual	1994	d) Accident manual	1991		
24)	High level committee		a) Oatak 2000	d) Naversker	()
	a) September 2002	b) December 2002	c) October 2002	u) ivovembel	ZUUZ	

25)	a) National Development Ministeria b) National Disaster Management (c. National Disaster Management (uthority	()
	c. National Disaster Management Ad) None	gency		
26)	Full form of SPURT is a) Small Primate Un-Restrained Te c) School project using Rail Techno		(Testing)
27)	The first phase after disaster which hour is called a) golden hour b) Good Ho	is of shortest duration last for about an ur c) Go Home d) None	()
28)	Full form of ACD is a) Automatic call distributor c) Anti-Collision Device	b) Asain Co-operation Developm d) None	(nent)
29)	Disaster Management on Indian Ra a) Prevention and Mitigation. c) Rescue and restoration.	nilways deals with the following b) Preparedness for Quick relief d) All The Above	()
30)	The Parliament of India enacted the a) 23rd December 2005, c) 23rd September 2005	e National Disaster Management Act on b) 23rd October 2005 d) 23rd November 2005	()

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
а	а	d	d	а	С	а	b	d	а
11	12	13	14	15	16	17	18	19	20
а	С	С	а	b	С	d	а	С	С
21	22	23	24	25	26	27	28	29	30
b	а	а	а	b	b	а	С	d	а

.

ST-07: COMPUTER APPRECIATION

	Which of the following (A) Monitor	g is known as the bra (B) CPU		computer? eyboard	(D) ROM	()
	Modem is used for? (A) Supply DC power (C) AC to DC convers	` ,	(B) D0	C to DC conve	ersion	(on)
3)	The acronym for MAC (A) Media Access cor (C) Media Access cor	nfiguration	` '	ain Access co ain access co		()
4)	(A) Internet protocol (C) Internet processing			(B) Immediate protocol (D) Immediate processing)
5)	Which of the following (A) Scanner	g is an output device (B) Joystick		oeaker	(D) Touchpa	(ad)
6)	RAM stands for? (A) Random Aligned (C) Read Access Me	-	` '	andom Accessone of these	s Memory	()
7)	') Data in RAM are (A) Volatile in nature (C) Both of these		(B) Non-volatile in nature (D) None of these			()
8)	BIOS stand for? (A) Basic instruction (C) Basic interface or		` '	nsic input outp	ut system	()
9)	RAM in its commercia (A) SIMM	al forms is available (B) DIMM		oth of these	(D) None of	(these)
10)	Which of the following (A) SRAM	g requires refreshing (B) Virtual Memory				()
11)	Refresh rate of a mor (A) Hz	nitor is measured in: (B) Meter	(C) Ar	npere	(D) Volts	()
12)	Which of the following processing power of a (A) Virtual Memory	a CPU?			ed up the (D) Flash M	(emory)
13)	Which of the following (A) Registers	g is lowest in memor (B) Secondary Mem	•	-	emory (D	()RAM)
14)	CRT stands for? (A) Character Ray Tu (C) Color Resonant T			(B) Cathode (D) Color Ra	•	()

15)	Which of the following	=	(0) 14	(D) AII	()
	(A) Keyboard	(B) OMR	(C) Mouse	(D) All		
16)	LCD stands for? (A) Liquid crystal Disp (C) Light Crystal Disp	•	(B) Laser Crystal D (D) None of these	isplay	()
17)	The types of printers, printing process, are (A) Non-impact printer (C) Laser printer	called as:	g head contacts with (B) Impact printer (D) None of these	the paper in	()
18)	Which of the following (A) FDD	g is a type of optical (B) HDD	media? (C) CD	(D) Magnetic	(Tape)
19)	A wireless technology over short distances i (A) Wifi	_	adgets used for excl	nanging data (D) USB	()
20)	DVD stands for? (A) Digital video displ (C) Digital video disk	ay	(B) Digital Versatile (D) None of these	Disk	()
21)	Which language was (A) Machine language (C) High Level Langu	е	ition language? (B) Assembly Lang (D) C Language	uage	()
22)	Which of the following computer? (A) ALU	g is responsible for a	•	ns in a (D) Registers	(s)
23)	The memory used in (A) DRAM memory		•	(D) None	()
24)	Technology used to p telephone network is (A) Transmitter	•	ansmitting data over (C) Transistor	wires of (D) DSL	()
25)	Modulation is the pro- (A) Sending a file from (B) Converting analog (C) Converting digital (D) None of these	n one computer to a g signals to digital si	gnals		()
26)	Demodulation is the p (A) Sending a file from (B) Converting analog (C) Converting digital (D) None of these	m one computer to a g signals to digital si	gnals		()

MDZTI (S&T) MLY / SCRly Page 20

27)	Which of following is (A) Conductor	used in Randrom Ac (B) Semi Conductor	cess Memory? (C) Vaccum Tu	bes (D) T	(ransist) or
28)	Which part of the cor (A) Control unit	nputer controls the m (B) ALU	nachine cycle? (C) Memory	(D) Bus unit	()
29)	Which among followi (A) RAM	ng is secondary stora (B) Transistor	age device? (C) Hard Disk	(D) Semi Cor	(nductor	
30)	Internal memory in a (A) System Bus	•	(C) Microprocessor	(D) A set of r	(egister) s
31)	In which type of complete (A) Analog Computer (C) Data Computer	•	ented as discrete sigr (B) Digital Compute (D) All of these		()
32)	An electronic path the another is? (A) Logic Gate	at sends signals from (B) Bus	n one part of comput (C) Modem	er to (D) Hard disk	()
33)	Memory in a PC is ac (A) Control Bus	ddressed by (B) Data bus	(C) Address bus	(D) None of t	(these)
34)	Which of the following (A) Monitor	g is an input device (B) Keyboard	(C) USB	(D) Speaker	()
35)	Which device among phone line? (A) Modem	following is used for (B) USB	sending digital data (C) Scanner	over a (D) Printer	()
36)	Which of the following (A) MICR	()	,	(D) Plotter	()
37)	In computer AC to Do	C conversion is done (B) Adapter	by? (C) RAM	(D) SMPS	()
38)	Which one of the follo (A) Printer	owing is an output de (B) USB	evice? (C) Trackpad	(D) File Mana	(ager)
39)	Name of the screen t (A) Recog Screen	hat recognizes touch (B) Point Screen	input is : (C) Touch Screen	(D) Android S	(Screen)
40)	Which one of these s (A) CD ROM	tores more data than (B) Floppy		(D) Red Ray	•)
41)	Eight Bits make up a (A) Byte	(B) Megabyte	(C) Kilobyte	(D) None	()
42)	Which one of these a	lso known as read/w (B) RAM	rite memory ? (C) DVD	(D) Hard Dis	(k)

43)	The printed output from	·			()
	(A) Copy	(B) Hard Copy	(C) Soft Copy	(D) Paper		
44)	Which of the following	g is not an operating	system?		()
	(A) DOS	(B) ORACLE	(C) LINUX	(D) WINDOW	/S	
45)	The process of starting	ng the computer and	loading of operating	system		
	programs for execution	on is known as			()
	(A) Initializing	(B) Loading	(C) Booting	(D) Retreiving	g	
46)	Who is the father of c	computer?			()
(A) Harman Hollerith			(B) Ada Byron			
	(C) Blaise Pascal		(D) Charles Bobbag	e		
47)	A desktop computer i	s also known as			()
	(A) PC	(B) Laptop	(C) Mainframe	(D) Palmtop		
48)	Which is the most po	werful computer?			()
	(A) Mini computer		(B) Micro computer			
	(C) Mainframe compu	uter	(D) Super computer			
49)	Which one of the follo	owing is not a compu	ter hardware?		()
	(A) Mouse	(B) Monitor	(C) Printer	(D) Antivirus		
50)	The first computer wa	as programmed using	3		()
	(A) Assembly language	ge	(B) Machine langua			
	(C) Source code		(D) Object code			

<u>ANSWER KEY</u>

1	2	3	4	5	6	7	8	9	10
В	D	С	Α	С	В	Α	В	С	D
11	12	13	14	15	16	17	18	19	20
А	В	В	В	С	А	В	С	В	В
21	22	23	24	25	26	27	28	29	30
А	А	С	D	В	С	В	Α	С	D
31	32	33	34	35	36	37	38	39	40
В	В	С	В	Α	Α	D	Α	С	С
41	42	43	44	45	46	47	48	49	50
А	В	В	В	С	D	Α	D	D	В

MDZTI (S&T) MLY / SCRly

ST-08: TELECOM CABLES

1) What is the purpose of loading in an underground Telecom Cable (
	a) To reduce transmis	ssion loss	b) To decrease cros			
_,	c) To reduce noise		d) To increase atter	luation	,	
2)	What is the length of l	•	•	d) 1000 matra	()	
	a) 2000 mtrs	b) 1830 mtrs	c) 2500 mtrs	d) 1900 mtrs	,	
3)	What is the maximum	·	•	· ·	()	
	a) 30 pf	b) 20 pf	c) 40 pf	d) 10 pf		
4)	The unbalance in cap			-I\ D:-44:	()	
	a) Noise	b) Attenuation	c) Cross talk	d) Distortion		
5)	Unbalance of Earth co	_		N D: (()	()	
	a) Noise	b) Cross talk	c) Attenuation	d) Distortion		
6)	The capacitance unba		circuit 2 of quad no	1 with respect	to	
	side circuit 1 of quad		c) K11	d) K12	()	
	a) K9	b) K10	,	,		
7)	Overhead lines are no	ot fit for Telecommur	nication circuits in RE	area becaus	e	
	ofa) conductors do not l	have insulation	b) interference of In	duced voltage	() by 25ky	,
	c) conductors are thic		d) High cross talk	duccu voltage	by Zokv	
۵۱	The purpose of twiste		,		<i>(</i>)	
U)	a) To reduce cross ta	•	b) To give strength		()	
	c) Ease in manufactur		d) To avoid signal lo	oss		
9)	At what distance cond	denser ioint is done i	n a loading section o	of 6 guad cable	∋()	
-,	a) 915 mtrs	-	-	-	,	
10)	Telecomswitch board	cables are used for			()	
,	a) Outdoor telecom w		b) Indoor telecom w	riring	,	
	c) Electrical switch bo	pard wiring	d) Underground tele	ecom wiring		
11)	The characteristic imp	pedance of a switch	board cable is		()	
	a) 500 Ω	b) 600 Ω	c) 470 Ω	d) 1120 Ω		
12)	Purpose of rip cord in	a switch board cabl	e is to		()	
•	a facilitate the remova	al of PVC sheath)	b) remove the insula	ation of the co	nductor	
	c) route the cable thro	ough pipes	d) uncoil the cable			
13)	Expand UTP cable				()	
	a) Unscreened twisted	d pair	b) Unused twisted p	pair		
	c) Unusual twisted pa	ir	d) Unshielded twiste	ed pair		

In general, CAT cable	es are connected	d with type of	f connectors	()
a) RJ 15	b) RJ 45	c) RJ 11	d) RJ 9		
In STP cables	is υ	sed as screen		()
a) Aluminium foil		b) Aluminium w	ires		
c) Aluminium sheath		d) Copper shea	th		
The co-axial cable's	usual impedance	shall be o	Ohms	()
a) 40-60 or 70-90		b) 40-60 or 70-	100		
c) 40-50 or 70-80		d) 20-40 or 30-4	40		
RG 8 cable can be us	sed up to the len	gth of		()
a) 600 mtrs	b) 800 mtrs	c) 400 mtrs	d) 500 mtrs		
The material used for	conductor in tel	ecom cables is high	conductivity	()
a) Insulated copper		b) Annealed co	b) Annealed copper		
c) Silver coated copp	er	d) Aluminium co	oated copper		
What is the colour co	de of 37th pair ir	n a 50 pair switch boa	ard cable	()
a) Orange & red	b) Blue & red	c) Green & red	d) Slate & v	vhite	
Specification of Switch	ch Board cable is	<u> </u>		()
			S:TC 41/97 (Am	d. 2)	
c) IS-694-Part /1964	d)	TEC Spec.No: GR/	NIR/06/03 of Ma	rch 20	02
UTP cable that transi	mits up to 16Mbp	os is		()
a) Cat 1	b) Cat 2	c) Cat 3	d) Cat 4		
UTP cable that transi		()		
a) cat 3	b) Cat 2	c) Cat 4	d) Cat 1		
Expand PIJF				()
a) Polyethylene insul	ated jelly filled	b) Polyester ins	ulated jelly filled	cable	
c) Polymer insulated	jelly filled	d) Polyvinyl ins	ulated jelly filled		
RDSO spec. for PIJF	telephone Cable	e is		()
a) IRS-TC: 41/97	b)	TEC Spec.No: GR/	NIR/06/03 of Ma	rch 20	02
c) IS 434-Part-1/1964	1 d)	IS-694-Part /1964			
The colour code of p	air number 16 in	a 20 pair PIJF cable	.	_ ()
In 20 pair PIJF cable	, conductor insul	ation main colours a	re and	l mate	
colours are				()
a) 4 & 5	b) 3 & 5	c) 5 & 4	d) 6 & 4		
The number of units	in 20 pair cable a	are		()
a) 5	b) 4	c) 6	d) 3		
	a) RJ 15 In STP cables a) Aluminium foil c) Aluminium sheath The co-axial cable's (a) 40-60 or 70-90 c) 40-50 or 70-80 RG 8 cable can be us a) 600 mtrs The material used for a) Insulated copper c) Silver coated copp What is the colour co a) Orange & red Specification of Switc a) IS 434-Part-1/1964 c) IS-694-Part /1964 UTP cable that transi a) Cat 1 UTP cable that transi a) Cat 1 UTP cable that transi a) cat 3 Expand PIJF a) Polyethylene insulated RDSO spec. for PIJF a) IRS-TC: 41/97 c) IS 434-Part-1/1964 The colour code of p a) Black & slate In 20 pair PIJF cable colours are a) 4 & 5 The number of units in	a) RJ 15 b) RJ 45 In STP cables is u a) Aluminium foil c) Aluminium sheath The co-axial cable's usual impedance a) 40-60 or 70-90 c) 40-50 or 70-80 RG 8 cable can be used up to the len a) 600 mtrs b) 800 mtrs The material used for conductor in tel a) Insulated copper c) Silver coated copper What is the colour code of 37th pair in a) Orange & red b) Blue & red Specification of Switch Board cable is a) IS 434-Part-1/1964 b) Column Is a by Cat 2 UTP cable that transmits up to 16Mbp a) Cat 1 b) Cat 2 UTP cable that transmits at up to 10 Ma) cat 3 b) Cat 2 Expand PIJF a) Polyethylene insulated jelly filled c) Polymer insulated jelly filled RDSO spec. for PIJF telephone Cable a) IRS-TC: 41/97 b) Column Is 434-Part-1/1964 d) The colour code of pair number 16 in a) Black & slate b) Balck & yellour colours are a) 4 & 5 b) 3 & 5 The number of units in 20 pair cable as	a) RJ 15 b) RJ 45 c) RJ 11 In STP cables	In STP cables	a) RJ 15 b) RJ 45 c) RJ 11 d) RJ 9 In STP cables

28)	The number of units i	in 50 pair cable are $_$		()	
	a) 2	b) 4	c) 5	d) 6		
29)	The number of units i	in 100 pair cable are		()	
	a) 5	b) 4	c) 6	d) 7		
30)	How many binding ta	pes are used for ide	ntifying each unit in F	PIJF pair cable	are	
	·	–		()	
	a) 4	b) 5	c) 3	d) 6		
31)	Entry of moisture / wa			`)	
	a) Aluminium sheath	b) GI armour	c) Jelly	d) All		
32)	Amour in UG cable g			()	
	a) Mechanical strengc) Provides screening		b) Prevents the entd) Prevents the ent			
00)	,			y of moisture		
33)	Loop resistance of 0. a) 184 Ω	b) 180 Ω	c) 192 Ω	d) 194 Ω)	
24\	,	,	•	,	. / \	
34)	The induction by AC a) Electrostatic and g	•	elecom circuits is due b) Electromagnetic		,	
	c) Electric and magne		d) Electrostatic and			
35)	Cumulative buildup o		•	_		
00)	a) Matching transform		b) Isolation transfor		_ (
	c) Current transforme		d) Step down transformers			
36)	Psophometric voltage	e in telecommunication	on circuits should no	t exceed m\	/ ()	
	a) 3mv	b) 2mv	c) 4mv	d) 5mv		
37)	The screening factor	of Aluminium sheath	/screen is always	than unity	()	
	a) More	b) Equal to	c) Less	d) Higher		
38)	Isolation transformers	s are used to		()	
	a) To reduce Induced	l voltage due to cate	nary			
	b) For impedance ma	· ·				
	c) For balancing of ci					
00)	d) For reducing noise				14	
39)	Under normal condition in the telecommunication	•	•	-		
	a) 60 v	b) 70 v	c) 80 v		.)	
40١	Maximum permissible	,	•	,	١	
70)	a) 150 V	b) 160 V	c) 140 V	d) 170 V)	

41)	Isolation transformers	s are introduced at a	regular intervals of a	approximately ₋	(
	a) 19 kms	b) 20 kms	c) 10 kms	d) 17 kms	
42)	The induced voltage	in an U/G telecom ca	able due catenary pe	er km is	(
	a) 6.75 V	b) 8.75 V	c) 7.75 V	d) 5.50 V	
43)	Isolation transformers	s are provided at			(
	a) Repeaters	b) Test room	c) At EC sockets	d) Cable huts	3
44)	The Transmission los	s in 0.9 mm conduc	tor dia quad cable is	db/km	(
	a) 0.63	b) 0.25	c) 0.38	d) 0.69	
45)	4 Wire system is used	d in U/G cable is bed	cause of		_(
	a) To have two wires	as stand by	b) Amplifiers are us	sed	
	c) Using cable huts in	n between	d) For future usage		
46)	RDSO specification of	of 4/6 PIJF quad cab	le of 0.9 mm dia con	ductor is	(
	a) IRS:TC: 30/2005 v	er.2	b) IRS:TC: 40/2005	over.2	
	c) IRS:TC 50/2005 v	er.2	d) IRS:TC: 30/2015	ver.2	
47)	RDSO specification of	of 4/6 PIJF quad cab	le of 1.4 mm dia con	ductor is	(
	a) IRS:TC: 30/2005 v	er.2	b) RDSO/SPN/TC/	72-07	
	c) IRS:TC 50/2005 v	er.2	d) RDSO/SPN/TC/8	82-07	
48)	1.4 mm dia conducto	r 4/6 quad cable is u	sed when the distar	nce between th	ne
	block stations is more	e than			(
	a) 30 kms	b) 10 kms	c) 15 kms	d) 25 kms	
49)	The insulation resista	nce between each c	conductor in a quad s	shall not be les	ss
	than per	kilometer			(
	a) 200MΩ	b) 100MΩ	c) 400MΩ	d) $500M\Omega$	
50)	Purpose of Poly Alum	ninium sheath in a qu	uad cable is		(
	a) To prevent the ent	ry of moisture	b) To provide	e screening	
	c) To protect the cond	ductors from damage	e d) To reduce	induced volta	iges
51)	The colours of condu	ctors of quad no 5 ir	n 6 quad cable is		(
	a) Black, white, red, s	slate	b) Blue, white, red,	slate	
	c) Yellow, white, red,	slate	d) Green, white, red	d, slate	
52)	The resistance of cor	nductor in a quad cal	ble is		(
	a) 28Ω/km	b) 56Ω/km	c) 58Ω/km	d) 26Ω/km	
53)	The characteristic im	pedance of a 6 quad	cable is		(
	a) 600Ω	b) 1120Ω	c) 56Ω	d) 470Ω	

MDZTI (S&T) MLY / SCRly Page 26

54)	what is the minimur	n distance snould be	e maintained betwee	n the OHE	
	masts and the cable			()
	a) 5.00 mtrs	b) 5.75 mtrs	c) 6.00mtrs	d) 6.75mtrs	
55)	All new Telecom ca	bles shall be laid clo	se to near	()
	a) way station b) the	e track c) the railway	boundary d) the tele	ecom equipment room	l
56)	The normal depth of	f the trench for Telec	com Cable is	()
	a) One metre	b) 1.5 metre	c) 1.8 metre	d) 2 metres	
57)	The standard drum	length of 4/6 quad ca	able is	()
	a) One km	b) Two kms	c) 500 mtrs	d) 460 mtrs	
58)	Tapping diagram co	nsists of		()
	a) Reasons for each	n tapping	b) Location of eac	ch tapping	
	c) Distance between	n the tappings	d) No. of tappings	;	
59)	The derivation cable	e used in 4/6 quad ca	able system is	()
	a) 6 quad cable	b) 4 quad cable	c) PIJF cable	d) SWBD cable	
60)	Telecom cable shall	l be laid in l	pipes for a length of	on either	
	side of TSS			()
	a) RCC pipes & 300)mtrs	b) GI pipes & 200	metres	
	c) Troughs & 200 m	trs	d) HDPE & 200 m	ntrs	
61)	The cable route indi	cators are to be plac	ced at every o	on normal path ()
	a) 50 mtrs	b) 100 mtrs	c) 70 mtrs	d) 60 mtrs	
62)	On each side of ma	jor girder bridge a ca	able reserve of	to be provided ()
	a) 20 mtrs	b) 10 mtrs	c) 15 mtrs	d) 5 mtrs	
63)	On each side of mir	or bridge a cable res	serve of meters	s to be provided ()
	a) 7 mtrs	b) 6 mtrs	c) 5 mtrs	d) 4 mtrs	
64)	A cable reserve of _	meters to be pro	ovided at every joint	loop ()
	a) 3 mtrs	b) 4 mtrs	c) 5 mtrs	d) 2 mtrs	
65)	The widely used cal	ole laying method for	r U/G cables is	()
	a) Laying solid		b) Drawing throug	ıh ducts	
	c) Laying in PVC pip	oes	d) Laying direct in	the ground	
66)	The impedance ratio	o of matching transfo	ormer used for VF ci	rcuits in unloaded qua	ad
	cable is			()
	a) 470 : 600 Ω	b) 470 :1120 Ω	c) 470 : 470 Ω	d) 1120 : 1120 Ω	
67)	"Branch off clip" is u	sed for		joint only. ()
	a) normal joint k) loading coil joint	c) derivation joint	d) condenser joint	

68)	RDSO specification for	or RTSF jointing kit	is		()
	a) IRS-TC: 77/2012		b) IRS-TC: 79/201	2		
	c) IRS-TC: 77/2011		d) IRS-TC: 77/201	4		
69)	The purpose of tinned	d copper braid in RT	ΓSF jointing kit is		()
	a) To provide continu	ity between the GI a	armours of both the	ables		
	b) To provide continu	ity between the poly	al sheaths of both t	he cables		
	c) To provide continu	ity between the Al. s	screening of both the	cables		
	d) For providing conti	inuity between the c	onductors			
70)	The purpose of jelly in	n RTSF jointing kit			()
	a) To prevent entry o	f water	b) To provide good	I conductivity		
	c) To avoid short circ	uit	d) For providing m	echanical supp	oort	
71)	Induced voltages in 6	quad cable is elimi	nated by earthing		()
	a) GI armour b) P	oly. Al. sheath c) Al. screening wires	d) Aluminiı	um foil	
72)	The impedance ratio	of matching transfo	rmer used for block	circuits in unlo	aded	
	quad cable is				()
	a) 470:600 Ω	b) 1:2 Ω	c) 470:1120 Ω	d) 1120: (600 Ω	
73)	The value of loading	coil connected in ea	ich limb of a 6 quad	cable is	()
	a) 118mH	b) 88mH	c) 44mH	d) 59mH		
74)	The rdso spec for join	nting kit used for PIJ	IF telephone cables	s	()
	a) IRS/TC/41/97		b) IRS-TC-57/2006	6		
	c) IRS.TC.77-2012		d) IRS.TC.77-2013	}		
75)	Purpose of sealant ta	pe in the RTSF kit i	s		()
	a) To cover the meta	llic projections	b) To wrap the con	ductors		
	c) To seal the joint		d) To prevent entry	of water		
76)	Insulation resistance	of quad cable shall	be tested with	Megger		
	after completion of jo	inting of cables.			()
	a) 100 V	b) 250 V	c) 500 V	d) 1000 V		
77)	Transmission loss tes	st shall be carried oเ	ut with a tone freque	ncy of	_ ()
	a) 1000 c/s	b) 800 c/s	c) 600 c/s	d) 400 c/s		
78)	Cross Talk has to be	measured with	frequency f	or VF Circuits	()
	a) 800 c/s	b) 1000 c/s	c) 1200 c/s	d) 1500 c/s		
79)	Periodicity of conduc	tion test carried out	on a quad cable is_		()
	a) Weekly	b) Monthly	c) Quarterly	d) Yearly		
80)	Periodicity of insulation	on resistance test ca	arried out on a quad	cable is	()
	a) Monthly	b) Quarterly	c) Half yearly	d) Yearly		

81)	Periodicity of transmission loss test carried out on a quad cable is (
	a) Fortnightly	b) Monthly	c) Quarterly	d) Half yearly		
82)	Periodicity of cross talk test carried out on a quad cable is					
	a) Fortnightly	b) Monthly	c) Weekly	d) Quarterly		
83)	Periodicity of Psophometric noise test carried out on a quad cable is (
	a) Fortnightly	b) Monthly	c) Quarterly	d) Yearly		
84)	What is the tone frequency	uency applied for cro	ss talk test on BPA0	C circuits	()	
	a) 1000 c/s	b) 5000 c/s	c) 150 k c/s	d) 155 k c/s		
85)	Low insulation fault ca	an be localized with	the help of		()	
	a) Multi meter b)	Megger c) Earth	n tester d) Digit	al cable fault lo	cator	
86)	In digital cable fault lo	ocator, which mode is	s used to find out op	en/ short circui	t	
	fault				()	
	a) Low insulation		b) Insulation resista	ance		
	c) Pulse echo reflection	on	d) Foreign potentia			
07\	Defere discomposting	Disak DDAC and ID) siverite for testing a	of Oward applica		
01)	Before disconnecting Block, BPAC and IB circuits for testing of Quad cable has to obtained from Station Master					
			h) Disconnection n	ata .	()	
	a) Disconnection mer		b) Disconnection no			
00/	c) Disconnection order		d) Disconnection bo	<i>(</i>)		
00)	The purpose of Integral a) To locate the path	rated Cable patri dia			()	
	c) For maintenance		b) To carry out testd) To protect the ca			
80)	BPAC circuit in quad		, ,	เมเธอ	<i>(</i>)	
03)	a) station to station	cable shall be testee	b) location to locat	ion	()	
	c) section to section		d) division to division			
90)	Quad cable has to be	tested neriodically h	,		()	
50)	a) Weekly		c) Quarterly		()	
91)	Quad cable has to be	•	,	,	()	
0.,	a) Weekly & monthly	tootou portoutoutly k	b) Monthly & quarterly			
	c) Quarterly & yearly		d) Half yearly & yea			
92)	Quad cable has to ins	spected by Officers o	, ,)		
·-,	a) Quarterly		c) Yearly		,	
93)	The insulation resista		•	,	()	
/	a) 5 b) 10 c) 20 d) 50					
94)	Jointing kit used for 6-quad cable is (
,	a) RTSF-1	b) RTSF-2	c) RTSF-3	d) RTSF-4	, ,	
	,	,	-	,		

95)	Screening of 6-quad	is done using			()
	a) Aluminium wires	b) Aluminium	n sheath	c) Lead sheath	d) All	
96)	Loop resistance of 1.4	4 mm diameter 6-Qu	ad cable is		()
	a) 23.2 ohm	b) 56 ohm	c) 118 ohm	d) None		
97)	RDSO Specification of	of 1.4 mm dia 6-quad	l cable is		()
	a) RDSO/SPN/TC/72-07		b) IRS:TC: 30/2005 ver.2			
	c) IRS:TC: 31/2005 v	er.2	d) None			
98)	98) Quad number allotted for emergency communication is					
	a) Quad-1	b) Quad -2	c) Quad-3	d) Quad-4		
99)	Coaxial cable is used	for			()
	a) Emergency communication		b) Control communication			
	c) 25 W VHF set		d) None			
100)	STP cable is used for				()
	a) PA system wiring		b) Auto phon	e connection		
	c) Selective calling ph	none	d) IB phone of			

ANSWERS KEY

1	2	3	4	5	6	7	8	9	10
а	а	С	С	а	С	b	а	b	b
11	12	13	14	15	16	17	18	19	20
b	а	d	b	а	С	d	b	а	d
21	22	23	24	25	26	27	28	29	30
d	а	а	а	d	С	b	С	а	b
31	32	33	34	35	36	37	38	39	40
С	а	а	d	b	b	С	а	а	а
41	42	43	44	45	46	47	48	49	50
d	b	d	а	b	а	b	d	b	b
51	52	53	54	55	56	57	58	59	60
С	а	d	b	С	а	а	b	С	а
61	62	63	64	65	66	67	68	69	70
а	b	С	а	d	b	С	а	С	а
71	72	73	74	75	76	77	78	79	80
С	С	d	b	а	а	b	а	b	d
81	82	83	84	85	86	87	88	89	90
b	d	С	d	b	С	а	d	b	b
91	92	93	94	95	96	97	98	99	100
С	С	b	d	а	а	а	С	С	а

ST-09: ELECTRONIC COMPONENTS

1)	Resistance measurer A. Minimum	ment in a circuit is do B. Maximum	ne onl	y when power C. Equal	is	D. Zero	(o)
2)	An inductor opposes A. Flux	changes in B. Voltage		C. Current		D. EMI	(=)
3)	Working of transform A. Mutual inductance	•	tance	C. Magnetic	flux	D. Hen	(nry)
4)	Resistance of diode i A. Low	n forward bias is B. high		C. Equal		D. Zero	(o)
5)	Zener diode is always A. Forward bias	s is connected in B. Series	C. Pa	rallel	D. Re	verse B	(ias)
6)	In reverse bias the di A. Conducts	ode B. Does not conduc	ts	C. Remains	same	D. Is a	(ctive)
7)	Transistor isA. Active	device. B. Passive	C. Sw	ritching	D. No	t A	()
8)	Schottky diode are us A. Amplifiers		C. Re	 gulators	D. SM	IPS Cha	(argers)
9)	Varicap is used in A. RF circuits	B. Chargers	C. Mix	ker	D. IF	Amplifie	(r)
10)	In film capacitor thin p	olastic is used as B. Dielectric	 C. Se	mi Conductor		D. Amı	(olifiers)
11)	In common base tran A. Low	sistor configuration t B. High	he out C. Sa	-	e is D. Zei		()
12)	Number of junction in A. 0	a diode. B. 1	C.2		D. 3		()
13)	If the positive termina it is known as A. Forward biased barrie	al of the battery is con		d to the anode		diode, D. Sch	()
14)	For a ideal PN junction	on diode, the current B. Low	in reve	<u>-</u>		Curren	(t Flow)
15)	Number of valence el	lectrons in a silicon a B. 4	atom ar C. 8	re	D. 16		()
16)	The most commonly A. Silicon	used semiconductor B. Germanium	eleme C. Ga		D. Ca	rbon	()
17)	Number of protons in A. 4	the nucleus of a silic B. 14	con ato	om are	D. 32		()

18)	An intrinsic semicond	luctor at room tempe	erature has	()	
	A. few free electrons	and holes	B. Many holes			
	C. Many free electror	าร	D. No holes			
19)	Holes are	charges		(,)	
10)	A. Neutral charges		C. Negative charge	s D. Posi	tive	
	charges	B. 140 onargoo	o. regative charge.	D. 1 001		
					, ,	
20)	Electrons are the mir	<u> </u>		()	
	A. Extrinsic Semicon		B. P-type Semicono			
	C. Intrinsic Semicond	luctors	D. N-type Semicono	ductors		
21)	A p-type semiconduc	tor contains		(()	
	A. Holes and electror	ns B. Pos	sitive ions C. Ho	les D. elec	trons	
22)	In a Zener diode with	a high breakdown v	oltage has	(()	
,	A. Lightly doped P ar	•	B. P or N is lightly d	oped	,	
	C. Heavily doped P a		D. None of these	•		
33 /	In Zener diode, the Z		as place	,	, <u> </u>	
23)	A. Below 6 V	B. At 6 V	C. Above 6 V	D. None of the	, , ,)	
				D. None of the	above	
24)	In Zener diode, the b			(()	
	A. Lowest	B. Moderate	C. High	D. Low		
25)	Photodiode is used in	the detection of		(()	
	A. Visible light	B. Invisible light	C. No light	D. Both A & B		
26)	Capacitor is a device	used to		(·)	
,	A. store electrical ene		- B. Vary the resistan	ce	,	
	C. store magnetic en	0,	D. Dissipate energy			
27\	_		, 0,	,	· \	
21)	Capacitor stores which A. Kinetic energy	on type of energy	 B. vibrational energ	\	.)	
	C. Potential energy		D. Heat energy	у		
	3,		0,			
28)	Which of the following	•		(()	
	A. Transistor	B. Rectifier	C. Capacitor	D. Vacuum Tu	ıbes	
29)	The formula used to	find the capacitance	C is	(()	
	A. Q/v	B. Qv	C. Q-v	D. Q + v		
30)	The capacitor doesn'	t allow sudden chan	ges in	(()	
,	A. Voltage	B. Current		D. Capacitano	-	
24\	· ·			- 1	, ,	
31)	The Inductor doesn't	_		D Industance)	
	A. Voltage		C. Resistance	D. Inductance	_	
32)	The units for inductar	nce is an)	
	A. Faraday, Henry		B. Coulomb, Farada			
	C. Henry, Faraday		D. Henry, Coulomb			

•	ansistor h one pn jur		 		B. two	pn junctic	ons	()
	hree pn jı					pn juncti			
34) The	number	of depleti	on layers	in a tran	sistor is _			(()
A. F	our		B. Three		C. One		D. Tv	vo	
				st size in	a transis			_ (()
A. C junc	Collector ction		B. Base		C. Emit	tter	D. cc	llector-ba	ase-
36) In a	PNP trai	nsistor, th	e current	carriers	are	 		(()
A. A	Acceptor i	ons	B. Donor	ions	C. Free	Electron	s D. Ho	oles	
				istor is _		_		(()
A. F	ligh		B. Low		C. Very	/ high	D. Al	most zero)
				nductor la				(()
A. T	wo		B. Three		C. Foui	r	D. No	one	
39) An SCR has three terminals viz (()			
	Cathode, a . Anode,					de, catho e of the a			
	,	·					ibove	,	,
•	Jnidirection		l B. Bidired	switch		hanical	D. No	one (,)
71. 0	ornan ood	Ji idi	B. Bidiro	otional	O. 11100	riariioai	<i>D.</i> 140	5110	
			<u>A N</u>	SWER	RS KE	<u> Y</u>			
1	2	3	4	5	6	7	8	9	10
В	С	Α	Α	D	В	С	D	Α	В
11	12	13	14	15	16	17	18	19	20
В	В	Α	D	В	Α	В	Α	D	D
21	22	23	24	25	26	27	28	29	30
Α	Α	Α	С	D	Α	С	С	Α	Α
31	32	33	34	35	36	37	38	39	40
В	С	В	D	Α	D	В	С	Α	Α

ST-10: TELEPHONE INSTRUMENTS

In telephony ,transmission of speech cur a) line telephony c) wired telephony	rent on copper cable is termed as b) impedance matched telephon d) None	(Iy)
2) The basic requirement of a telephone isa) Signalingb) Switching	transmitter Receiver and c) Controlling d) None	()
3) Copper wires are used in telephony duea) Low costc) Less attenuation and distortion	to b) Easily available d) Good resale value	()
4) A good transmission line has a) low insulation resistance c) small conductor diameter	b) less amount of current carryind) None	(ig capa) city
5) Main distribution frame isa) connecting exchange output to field cab) a testing place for physical line paramc) used for providing protective devicesd) all		()
6) Card frame is meant fora) housing the cardsc) connecting only control cards	b) protection devices d) none	()
7) Power supply panel is responsible fora) power supply to peripheral cardsc) ringing power supply to subscribers	b) power supply to control cards d) both a and b	()
8) Two subscriber connected in the same e a) trunk switching b) group switching	<u> </u>	() none)
9) SPC stands fora) stored program controlc) storage program control	b) strong program control d) simple program control	()
10) Loop signalling is extended from a) subscriber to subscriber c) subscriber to exchange	b) exchange to subscriber d) exchange to exchange	()
11) Push button telephone meansa) dial pad for dialling digitsc) a button provided to start the phone	b) a push button to disconnect the)
12) A phone type connected between boss aa) main and extension typec) ordinary pair of two phones	in secretary is a b) only one phone shared betwe d) none	(en ther) m

13)	CLIP stands fora) caller line identity permissionc) calling line identification presentation	b) call incoming line permitted on d) caller inbound line promise)
14)	Cordless phone works on a) radio transmission c) wired transmission	b) both a and c d) none)
15)	In on hook condition, a) line is connected to ringer circuit c) line is connected to dialler circuit	b) line is totally disconnected from ex d) none) change
16)	In off hook condition, a) line is connected to the dialler circuic) line is connected to the ringer circuit	,) circuit
17)	DTMF stands for a) Double tone multiplexed frequency c) dual tone multi frequency	b) dual tone multiple frequencies d) dual tone mixed frequencies)
18)	•	(only incoming call allowed no incoming and outgoing from the pho) ne
19)	•	(directly to the exchange subscriber inter none) rface
20)	• • •	digital phone caller id phone)
21)	, , ,	into (Electrical energy None)
22)	A Receiver converts electrical energy a) Light energy b) Sound energy	•) ne
23)	In magneto telephone most commonly a) Piezo electric buzzer b) A.C. B	,)
24)	In all telephone instrument except in ma) Piezo electric buzzer b) A.C.BE)
25)	Maximum subscribers possible in mag a) 1 b) 2 c) 4	gneto telephone is (d) Any number of subscribers)
26)	Maximum subscribers possible in sele a) 10 b) 11 c) 12	ective calling telephone is. ()

27)	The working voltage (a) 12 V D.C	of selective calling to b) 24 V D.C	elephone is c) 48 V D.C	d) 6 V D.C	()
28)	The minimum and ma a) 10 to 14 volts DC c) 12.5 to 16.5 volts E	_	elective calling telep b) 10.8 to 14.4 volts d) 8.5 to 12.5 volts	DC DC	()
29)	The ideal current in Sa) 20 mA	elective calling telep b) 40 mA	hone is c) 60 mA	d) 80 Ma	()
30)	The ringing and spee a) 20 mA to 40 mA c) 15 mA to 30 mA	ch current in selectiv	re calling telephone i b) 40 mA to 60 mA d) 60 mA to 80 mA	s	()
31)	If buzzer fails in sele a) No ring	ctive calling telephor b) No speech	ne what is the fault c) No ring & no spe	ech d) Noi	(ne)
32)	If 12 V power supply a) no ring	fails in selective calli b) telephone is dead	• ,		(ne)
33)	If transmitter fails in a a) No incoming speed c) No ringing	·	nent than what is fau b) No outgoing spec d) none		()
34)	If receiver fails in any a) No incoming speed c) No ringing	•	nt than what is fault b) No outgoing spec d) none	ech	()
35)	what is the full form E a) Electronic polarity c) Electronic popup b	button telephone	b) Electronic push t d) none	outton telepho	(ne)
36)	Working voltage of Ela) -24 V D.C	PBT is b) -48 V D.C	c) +48 V D.C	d) +12 V D.C	()
37)	EPBT telephone gets a) STM	feed from b) Exchange	c) Raw supply	d) None	()
38)	In EPBT cradle off co	ndition current is b) 10 mA	c) 15 mA	d) 20 mA	()
39)	An EPBT cradle on ca	ondition current is b) 30 mA	c) 40 mA	d) 60 mA	()
40)	Ringer IC used in GC a) LS 1240	EL 501 telephone se b) LS 1260	et is 8 pins IC no c) LS 1562	d) RS 5263	()
41)	To supply proper pola a) Metal oxide varisto c) Zener diode	•	, circuit connected to b) Bridge rectifier d) Fuse	across line is	s ()

42	!) Make	and rece	eive VolF	phone of	calls from	n your PC), Iphone	or Andr	oid smar	t	
	•	e are call		\ D.(T.		\	· - ·		15 8.1	()
	a) So	ftphone	t) DKT pl	hone	c) EPE	31 phone	9	d) No	one	
43	a) Ha	line tele nd free te llular tele	elephone		ase unit	and a ha b) Cor d) non	dless tel			()
44	o1 rov a) 1 d			frequenc) 2 digit	y is sele	cted for p	_		t on EPE 4 digit	ВТ()
45	a) Loc	,				_	nsit exch	_	jh	()
46	a) At ME)F primaı D	•	tion is pr		y c) IPM	I	d) l	NONE	()
47	The p a) MD			outdoor a	and indoo	or cables c) DDI			; None	()
48	8) VOIP means a) Voice over internet protocol c) Voice operated instant phone			b) Void		nternet p	hone	()		
49) IP pho	one is us	ed							()
	a) Vo	ice	b) Data		c) Vide	eo	d) <i>i</i>	All		
50	,	phone is			· —					()
	a) UT	P cable	t) FS cab	ole	c) Swi	tch board	d cable	d) Q	uad cal	ble
				<u>A</u>	N S W	/ E R	KEY				
	1	2	3	4	5	6	7	8	9	10	
	а	а	С	а	d	а	d	С	а	С	
	11	12	13	14	15	16	17	18	19	20	
	а	а	С	а	а	а	С	b	а	а	
	21	22	23	24	25	26	27	28	29	30	
	b	b	b	а	С	b	а	b	а	b	
F	31	32	33	34	35	36	37	38	39	40	_
	а	b	b	а	b	b	b	а	b	а	
	41	42	43	44	45	46	47	48	49	50	
	b	а	b	а	С	С	а	а	d	а	

ST-45: PASSENGER AMENITIES (PA, IPIS, PIS & GPS CLOCK)

1)	Touch screen system a) Interactive informa b) Non interactive inf c) Passenger operate d) None	ation systems ormation systems				()
2)	LED based electronic a) non interactive info c) semi-inter active s	ormation systems			 ive information	(system) าร
3)	Call centre is the sys a) at Railway station c) both at Railway sta			b) at passe		er's()
4)	One of the System tha) Internet	nat provide information b) Alpha numeric d)
5)	One of the systems t a) Call centre	hat provide informat b) PSTN		station is RS		()
6)	Passenger Amenities a) GM of Zonal Railw c) Railway Board			RM of Division		_ ()
7)	Touch screens are use a) input devices				d) none	()
8)	In the Surface acous determined bya) Absorption of acouc) frequency changes	ustic waves	b) vol	e location of Itage change rrent change	es	()
9)	Digital video recorde a) 8	r can accommodate b) 16	c) 32		pers of camera d)64	s. ()
10)	Network video record a) IP based CCTV sub) Analog based CC c) both Analog and If d) none	urveillance system TV surveillance syste	em			_ ()
11)	In the Resistive toucl a) Voltage change c) Absorption of acou		b) Fre	equency cha	-	_ ()
12)	Redundant Array of i system has the stora a) Kilo byte	•		-		()

13)	Digital video recorder (DVR) is use a) IP based CCTV surveillance sys b) Analog based CCTV surveillance c) Both in Analog based & IP based d) None	tem e system	()
14)	The IVRS is integrated witha) PRS & NTES data base through		(and PRS)
	c) PRS & BSNL/RLY exchange	d) None		
15)	·	c data such as train arrival/departure		
	information form a) PRS server b) NTES server	ver c) both a & b d) no	(ne)
16)	PBX Switch in Call centre based IV	•	(١
10)	a) 8 E1 trunks c) 24 digital extensions	b) 72 analog extensions d) All	(,
17)	In Call center based IVRS, connect	tivity between BSNL exchange and Call		
	a) Analog circuits b) Dig	ital circuits c) Both a & b d) No	(one)
18)	Automatic announcing unit, Call bath Accident related queries and Regis	cility of services, E-mail access, Fax on ack facility on reservation confirmation, stration of complaints are available in	demand,)
19)	a) IVRS b) Call center based IVRS In IPIS switching is done by		(١
10)	a) Control console unit	b) Eight port LAN switch d) Platform data communication	hub	,
20)	Platform display boards and Coach	Guidance display boards in the platfor	ms	
	have the below said addresses. a) Unique or Device address c) Both a & b	b) Multicast address d) IP address	()
21)	MDCH routes the incoming signals	from CCU to	()
	a) Close circuit Televisionsc) LED based electronic display bo	b) PA systems ards d) all		
22)	of PDCH are	boards, can be connected to one O/P	()
00)	a) Two boards b) Four board	,		
23)	The interface cable used for conne is	cting PDCH output ports to display boar	rds ()
	a) RS485 b) Coaxial ca	able c) RS232 d) O	FC	,

24)	a) LAN switchb) by cross connectingc) by cross connectingd) none	g the PCs		-	()
25)	The serial port conne		uidance displ	ay boards along a lir	ie	
	will bea) serially connected		nnected	c) daisy chained	(d) no) one
26)	The maximum length	, -			()
20)	a) 15m	b) 1200m	c) 1000m		(,
27)	In IPIS Data speed in a) 57.6 kbps	RS232 cable should b) 4.8 kbps	d be c) 100 kbps	 d) 96.2 kbps	()
28)	In version-4 of the IPI a) IP addresses to be b) SMD LEDs to be u c) WI-FI connectivity d) All the above are of	e assigned to the dev sed in the display bo between the system	ices pards		()
29)	In IPIS, from version-	3 onwards colour of	the LEDs use	d in PDBs and CGD	Bs	
	should bea) blue	b) yellow	c) white	d) None	()
30)	The maximum length a) 15m	of RS232 cable use b) 1200m	d in IPIS is c) 1000m	 d) None	()
31)	In IPIS the data spee a) 57.6 kbps				()
32)	For one output port o	f MDCH, the number	s of display b	oards can be connec	cted	
	on point to multipoint a) 2 boards	basis are b) 4 boards	c) 6 boards	d) 8 boards	()
33)	Slave clocks which ca a) Impulse clocks	annot function withou b) Real time clocks)
34)	The master-slave dig a) GPS orbiting the e c) Real time clock on	arth	nmon referen b) Master clo d) None		()
35)	The backup for GPS a) Common reference c) Slave clock		b) Real time d) None	clock	()
36)	The oscillator in digita a) The less space it o c) Less space and his	occupies b) h	High frequenc	use of y stability of crystal o d) None	(scilla) tor

37)	Communication betw	een master and slav	e clocks can be	 	(
	a) Wired	b) Wireless	c) Both a & b	d) None	
38)	Rail Radar is an appl	ication introduced by	CRIS that enable c	ommuters to	(
	a) Location of the trainc) Train route & stopp		b) Running status of d) All	of the train	
39)	The blue arrows in th	e Google map indica	ate the	trains.	(
	a) Super fast	b) Mail/Express	c) Passenger	d) On time	
40)	The red arrows in the a) Super fast	Google map indicat b) Mail/Express			(
41)	Electronic Reservation a) LED monitors	on Chart is displayed b) LCD monitors		d) None	(
42)	Electronic Reservation		rm displays c) Waitlisted		(
43)	Charting server receiva) PRS	ves Chart data from b) NTES		vay network. d) None	(
44)	All the Electronic Res	servation Chart displa	ays are connected to	the server vi	a
	LAN with itsa) Unique IP	address b) Multicast	c) Hardware	d) None	(
45)		enables to exte	end the distance of the	ne LAN withou	ıt
,		Electronic Reservati b) Modem	on Chart system.		(
46)	Type of touch screen a) Resistive touch screen c) Surface acoustic w	reen	ays for PRS enquiry b) Capacitive touch d) Infrared touch so	screen	(
47)	Type of RAID level us a) RAID -2	sed in IP based surv b) RAID -3	eillance system is c) RAID -4	d) RAID -5	(
48)	Video analytical softwa) Touch screen	vare is used in b) IP based video s	•	IVRS d) I	(PIS
49)	RDSO specification of a) RDSO/SPN/TC/65 c) RDSO/SPN/TC/61	/2019	nce system is b) RDSO/SPN/TC/ d) RDSO/SPN/TC/		(
50)	RDSO specification of a) RDSO/SPN/TC/62 c) RDSO/SPN/TC/61	/2008	b) RDSO/SPN/TC/d) RDSO/SPN/TC/		(

51)	Sound intensity is exp	pressed in	_		()
	a) Watt/cm²	b) Watt/cm	c) Volt/cm	d) Volt/cm ²		
52)	The lowest acoustic μ called	oressure that gives r	ise to a sensation of	hearing is	()
	a) Threshold of audib	ility b) Loudness	c) Pitch	d) none		
53)	The highest pressure	to which the ear ca	n respond without ex	periencing pa	iin	
	is called	h) l audmaas	a) Ditab	d) none	()
54)	a) Threshold of painSound pressure and	•	·	d) none	()
- ,	a) Voltage and voltage b) Current and currer c) Power and power I d) Resistance and res	pe level in the field on the tevel in the field of evel in the field of e	f electricity electricity lectricity			,
55)	Acoustic impedance		•	ent of the sour	nd	
	pressure and the part				()
EG)	a) Area	b) Perimeter	c) Volume	d) none	,	`
56)	Threshold of pain is _ a) 140 dB	b) 110 dB	c) 40 dB	d) 20 dB	()
57)	Threshold of hearing	is.			()
	a) 20 dB	b) 40 dB	c) 60 dB	d) 80 dB		
58)	operated n	nicrophones employ	a diaphragm with or	nly one surfac	е	
	exposed to the sound		\ D # O !	I.	()
50)	a) PressureA microphone	b) Velocity	c) Both a & b	d) none	senonda	
39)	to the instantaneous		•	_	(s)
	a) Velocity	b) Pressure		d) None	•	,
60)	microphones a	are velocity-operated	d microphones.		()
	a) Ribbon	b) Dynamic	c) Condenser	d) cordless		
61)	The carbon, crystal, o	dynamic and capacit	tor microphones are	ope	erated	
	microphones. a) Pressure	b) Velocity	c) Both a & b	d) none	()
62)	microphones		•	,	()
,	a) Dynamic		c) Condenser	d) carbon	`	,
63)	The output impedance	e of a dynamic micr	ophone is approxima	ately	. ()
	a) 20 ohms	b) 40 ohms		d) 80 ohms		
64)	microphone	s are high impedand	ce microphones.		()
	a) capacitive	b) Ribbon	c) Carbon	d) dynamic		

65)	microphones	s require polarizing v	oltage.		()
	a) Condenser	b) Dynamic	c) Ribbon	d) Crystal		
66)	is the amoun	t of voltage develope	ed or generated by th	ne microphone	e for	
	an applied sound pre-	ssure at a test freque	ency of 1000 Hz.		()
	a) Sensitivity	b) Resolution	c) Power	d) All		
67)	Frequency Response	is the ability of a mi	crophone to produce	a proportion	ate	
	output to the sound p	ressure applied for tl	he specified range o	f	()
	a) Frequencies	b) Gain	c) Voltage	d) po	wer	
68)	The function of the _	_ is to convert electri	cal energy into acou	stic energy	()
	a) Loudspeaker	b) Microphone	c) Amplifier	d) None		
69)	type of loud spea	iker is a direct radiat	or.		()
	a) Cone	b) Horn	c) Both a & b	d) No	ne	
70)	type loud spe	eaker is an indirect ra	adiator.		()
	a) Horn	b) Cone	c) Both a & b	d) None		
71)	speakers are use	ed to reproduce the f	requency range of 5	0 Hz to 12 KH	lz. ()
	a) High fidelity	b) Low fidelity	c) Tweeter	d) Woofer		
72)	Limited frequency use	e can be prevented t	hrough a multiple sp	eaker system	l	
	comprising spe	eakers.			()
	a) separate	b) same	c) any combination	d) noi	ne	
73)	reproduces lo	ow frequency notes.			()
	a) Woofer	b) Tweeter	c) Both a & b	d) None		
74)	reproduces hig	gh frequency notes.			()
	a) Tweeter	b) Woofer	c) Both a & b	d) None		
75)	The minimum distance	e between column s	peakers in a row sho	ould be	()
	a) 2m	b) 4m	c) 8m	d) 10m		
76)	An in a PA system	m is a device, which	takes low level input	t signal and a	mplifies	
	to a high level output	signal to the desired	output power.		()
	a) Amplifier	b) Microphone	c) Speaker	d) None		
77)	is a low frequence	y control.			()
	a) Bass	b) Treble	c) Aux	d) Select sw	itch	
78)	is a high freque	ncy control.			()
	a) Treble	b) Bass	c) Aux	d) Select sw	itch	
79)	No battery current is	consumed when the	is working on A	C mains.	()
	a) Amplifier	b) Microphone	c) Speaker	d) None		
80)	For the connection of	loudspeakers in	matching method	three termina	al strips	
	are provided viz, com	., 100V and 70V.			()
	a) Impedance	b) Voltage	c) Current	d) Power		

81)	For the connection of loudspeakers in matching method, four termin	⊦al strips	
	are provided viz., com., 4Ω , 8Ω and 16Ω .	()
	a) Impedance b) Voltage c) Current d) Power		
82)	Amplifiers are rated at some specified output in watts with a declared hard	monic	
	content, of about%.	()
	a) 5 % b) 10 % c) 15 % d) 20 %		
83)	control routes the channel to either left or right output	()
	a) PAN b) TILT c) ZOOM d) All		
84)	The mean level of sound pressure shall bedB above the noise level.	. ()
	a) 5 to 15 dB b) 25 to 45 dB c) 50 to 100 dB d) 100 to 150 dB		
85)	The frequency response for the entire system should be within from 1	100 Hz	
	to 10 KHz.	()
	a) \pm 3 dB b) \pm 5 dB c) \pm 30 dB d) \pm 15 dB		
86)	The total harmonic distortion of the entire system shall not exceed%	at the	
	rated power output of the amplifier.	()
	a) 5 % b) 15 % c) 50 % d) 75 %		
87)	The signal to noise ratio under normal operating conditions of the amplifying	ng	
	systems shall not be worse than dB.	()
	a) 50 dB b) 100 dB c) 150 dB d) 200 dB		
88)	In the normal operating conditions sound pressure level is dB.	()
	a) 70 to 80 dB b) 100 to 120 dB c) 150 to 180 dB d) 10 to 20 dB		
89)	The sound reflection reaching a listener ear at least 1/15th of a second af	ter	
	the original sound is termed as.	()
	a) Echo b) Reverberation c) Sound foci d) None		
90)	is an accumulation of echoes.	()
	a) Reverberation b) Echo c) Sound foci d) None		
91)	is a one way communication in which one can call or summor	າ the	
	individuals or the general public.	()
	a) Paging b) Talkback c) Both a & b d) None		
92)	The system, which facilitates to talk back to the caller by the individual, is	called	
	system.	()
	, , , , , , , , , , , , , , , , , , , ,	lone	
93)	The effective impedance of the load should be matched with the	 ,	
	impedance of the amplifier.	()
	a) Output b) Input c) Both a & b d) None		
94)	Line matching transformers (LMT) are being used in	()
	a) Voltage matching method b) Impedance matching method	d	
	c) Current matching method d) Power matching method		
95)	The power transfer is maximum in	()
- /	a) impedance matching b) Voltage matching method	`	,
	c) Power matching method d) Current matching method		

96)			t is used der/ DVD	to conne	ct b) T	V	c) Projec	otor	d) All	()
97)		amp out s		used to o	connect _		iector	d) A	AII	()
98)	Mixe	r is used	to conne	ect d	levice) None		()
99)				for g b)			ı c) Both	d) No	(one)
100)	spea	ilway sta ıkers. oltage		b) Imped			c) Curre		or conne d) Po	()
	1	2	3	4	5	6	7	8	9	10	
	С	а	b	а	d	С	С	а	С	а	
	11	12	13	14	15	16	17	18	19	20	
	а	d	b	а	b	d	b	b	С	С	
	21	22	23	24	25	26	27	28	29	30	
	С	d	а	С	С	b	а	d	С	а	
	31	32	33	34	35	36	37	38	39	40	
	b	b	а	а	b	С	С	d	d	d	
	41	42	43	44	45	46	47	48	49	50	
	b	d	а	а	а	b	d	b	а	а	
	51	52	53	54	55	56	57	58	59	60	
	а	а	а	а	а	а	а	а	а	а	
	61	62	63	64	65	66	67	68	69	70	
	а	b	а	а	а	а	а	а	а	а	
	71	72	73	74	75	76	77	78	79	80	
	а	а	b	b	С	а	а	а	а	b	
	81	82	83	84	85	86	87	88	89	90	
	а	а	а	а	а	а	а	а	а	а	
!	91	92	93	94	95	96	97	98	99	100	
	а	а	а	а	а	а	а	а	b	а	

ST-46: ELECTRONIC AND IP EXCHANGE

1)	In ISDN what does the a) Network	e word 'N' stands for b) near	c) networking	d) net	()
2)	ISDN supportsa) Voice	services b) Data	c) Video	d) all	()
3)	What type of Signalling	g is used in ISDN Ex	c) MFC	d) R2-MFC	()
4)	What is the D-channel a) 64 Kbps	data rate in ISDN B b) 16 Kbps	RI Interface c) 48 Kbps	d) 16KBps	()
5)	What is the D-channel a) 64 KBps	data rate in ISDN P b) 72 Kbps	RI Interface c) 64 Kbps	d) 16 Kbps	()
6)	In ISDN ,BRI Transmis a) 128 Kbps	ssion rate are b) 144 Kbps	c) 2048 Kbps	d) 192 Kbps	()
7)	In ISDN PRI Transmis a) 2048 Kbps		c) 2.048 Kbps	d) 2048 Mbps	•)
8)	How many channels a a) 32 Channels	t present in Europea b) 30 Channels	n PRI interface rate c) 23 Channels	d) 64 channe	(els)
9)	How many Time slots a) 32 Time slots	at present in Europe b) 30 Time slots		e d) 64 Time sl	(ots)
10)	What is the H0-channe a) 512 Kbps		c) 192 Kbps	d) 384 Kbps	()
11)	What is the reference termination 1 at Custo a) R- Interface		_)
12)	What is the reference 2 at Customer premise a) U- Interface	es	inal Adapter and ter		()
13)	What type of encoding a) 2B/2Q	g is used in customer b) 1B/1Q	premises to ISDN S	switch – d) 2B/1Q	()
14)	HLDC means High-lev	vel link cont b) Data	rol. c) Design	d) Distance	()

15)	CLIP- Calling line	presentation			()
	a) Identification		c) Instant	d) Inbuilt		
16)	COLP- Connected	identification pre	sentation		()
	a) Line	b) Link	c) Length	d) Large		
17)	CUGuser g	group			()
	a) Closed	b) Calling	c) Client	d) Control		
18)	CTI- Computer				()
	a) Telephony	b) Telegraphy	c) Telepresentation	d) Touch		
19)	ACD-automatic				()
	a) Call	b) Control	c) Connected	d) Central		
20)	DECT enhar	·			()
	a) Digital	b) Distance	c) Discrete	d) None		
21)	CAP- Computerized A				()
	a) Position	b) Presentation	c) Point	d) Part		
22)	Main processor MEX				()
	a) 80386	b) 80286	c) 8086	d) 80186		
23)	Which is the control ca			1) 1405	()
	a) UGW	b) IDSP	c) DTR	d) MCP		
24)	Which is the switching			4) 00	()
	a) DTR	b) IDSP	c) MCP	d) GC		
25)	Which is the periphera			a) CET	()
	a) MCP	b) CNF	c) DTR	d) SFT		
26)	Which is the service of a) TEM	ard in coral flexicom b) SFT	6000 ? c) SA	d) DTR	()
 \	•	,	,	d) DTK	,	
27)	Which is the analog so a) TBR	ubscriber card in cora b) TWL	al flexicom 6000 ? c) SFT	d) SA	()
00)	•	,	,	u) oA	,	
28)	Which is the digital sul a) TBR	pscriber card in cora b) TEM	c) SA	d) SFT	()
00)	•	,	,	u) 01 1	,	,
∠ 9)	Which is the analog tro a) SFT	unk card in coral flex b) PRI	c) TBR	d) TEM	()
	~, -	~,	5, 15.1	~, ·v·		

30)	a) TC	b) TWL	com 6000 ? c) TEM	d) PRI	()
21\	Which is the BRI card	,	,	۵,	1	١
31)	a) TWL	b) TC	c) TEM	d) TBR	()
32)	Which is the VoIP card	d in coral flexicom 60 b) SFT	000 ? c) IDSP	d) UGW	()
	•	,	,	•		
33)	Which is the DTMF to a) GC	ne dialing support ca b) MCP	rd in coral flexicom 6 c) IDSP	6000 ? d) DTR	()
34)	Which is the caller ID	card in coral flexicom	า 6000 ?		()
	a) GC	b) MCP	c) DTR	d) IDSP		
35)	Which is the multifunc	tion resource card in	coral flexicom 6000	?	()
	a) DTR	b) IDSP	c) MCP	d) DRCF		
36)	Which card contains s	erial ports in coral fle	exicom 6000 ?		()
	a) MCP	b) UGW	c) IDSP	d) DRCF		
37)	Which card contains in	nternal modem in cor	ral flexicom 6000 ?		()
	a) UGW	b) GC	c) MCP	d) DRCF		
38)	What is the ringing vol	tage for analog phor	nes in ISDN exchang	es?	()
	a) 75V@40 Hz	b) 75V@35 Hz	c) 75V@30 Hz	d) 75V@25 H	Ηz	
39)	Which card contains C	COM2 port in coral fle	exicom 6000 ?		()
	a) UGW	b) GC	c) MCP	d) DRCF		
40)	Which card contains S	SAU in coral flexicom	6000?		()
	a) IDSP	b) UGW	c) MCP	d) GC		
41)	How many peripheral	shelves are supporte	ed in coral flexicom 6	000?	()
	a) 12	b) 14	c) 16	d) 18		
42)	How many slots are th	ere in a peripheral s	helf in coral flexicom	6000?	()
	a) 14	b) 16	c) 18	d) 20		
43)	In which slot PB-ATS	card is available in c	oral flexicom 6000?		()
	a) 1	b) 2	c) 1 & 2	d) 3		
44)	At Maximum how man	y shelves are contro	lled by 01 PB card ir	ocoral 6000?	()
	a) 1	b) 2	c) 3	d) 4		

45)	a) 128	are allotted for one po b) 256	eripheral shelf in cor c) 512	al flexicom 60 d) 1024	00?()
46)	How many time slots a a) 128	are allotted for each l b) 256	PB card in coral flexi c) 512	com 6000 ? d) 1024	()
47)	What is the time slot s a) 1024	witching capacity of b) 2048	32GC card in coral f c) 4096	exicom 6000? d) 8192	?()
48)	How many connectors a) 4	in MPG-ATS for eac b) 6	ch 32GC card in cora c) 8	al flexicom 600 d) 10	00?()
49)	How many IP ports are a) 254	e supported by a UG b) 252	W card in coral flexion	com 6000 ? d) 248	()
50)	How many pairs are real a) 4	equired to connect a b) 3	digital telephone in o	coral 6000 ? d) 1	()
51)	What is the nominal waa) 54v dc	orking voltage for isc b) - 52v dc	dn exchanges ? c) 50v dc	d) - 48v dc	()
52)	How many pairs are real	equired to connect Pl	RI trunk ? c) 3	d) 4	()
53)	Up to what length a DI a) 1 km	ECT telephone works b) 2 km	s on 0.5mm dia copp c) 3 km	oer pair? d) 4 km	()
54)	Foreign Exchange Sul a) Analog phone	oscriber card is used b) Digital phone	to connect c) Both	d) none	()
55)	Hyper terminal default a) 9600 Kbps	bit rate for accessing b) 9600 Bytes	g coral flexicom 600 c) 9.6 Bytes	0 is d) 9600 Byte:	(s)
56)	Clocking and synchror a) 32 GC	nization of exchange b) MCP-ATS	was done by which c) DRCF	card- d) DTR	()
57)	Which card is Digital to a) 32 GC	one generators in co	ral flexicom 6000 c) DRCF	d) DTR	()
58)	Which card is used for a) 32 GC	computer-telephony	/ integration in Coral c) CLA-ATS	flexicom-6000 d) DTR) ()
59)	In a particular copy the light is constant then the a) Standby mode	J	mode in Coral flexico	om-6000	()

60)	in even peripheral she			PB-ATS card-)
	a) PBD-ATS	b) MGP-ATS	c) CLA-ATS	d) PBD-24S	
61)	What type of cable is ucoral flexicom 6000			()
	a) FC-19	b) FC-18	c) H.43	d) H.41	
62)	What is the number of copy or port P13 of lef			•	
	Coral 6000 a) Unit 4	b) Unit 5	c) Unit 8	d) Unit 9)
63)	What is numbering of a) shelf-13, shelf 14 c) shelf-11, shelf 12	even and odd shelf c	of Peripheral shelf un b) shelf-2, shelf 3 d) shelf-12, shelf 13	•)
64)	What facility does SA a) Inbuilt ringer circuit	-		•)
65)	How many slots are tha) 14	ere in siemens hipat b) 8	h 3800 exchange ? c) 10	(d) 12)
66)	Which slot contains ma	ain control card in sie	emens hipath 3800 e c) 7	exchange? (d) 8)
67)	How many pairs are was a) 22	rired for each slot to l b) 24	MDF in siemens 380 c) 26	0 exchange? (d) 28)
68)	How many DECT card	ls are supported in s	iemens hipath 3800 c) 3	exchange? (d) 4)
69)	How many ports are that a) 14	nere in a DECT card b) 16	in siemens 3800 exc c) 18	change? (d) 20)
70)	How many radio base a) 32	stations are support b) 64	ed in siemens 3800 (c) 256	exchange? (d) 128)
71)	How many pairs are real	equired to connect a b) 2	base station in hipat c) 3	h 3800 exchange? d) 4	()
72)	How many simultaneo	ous calls are support b) 10	ed by one base stati c) 16	on in hipath 3800? d) 20	()

73	3) How r a) 250	-	CT hand	sets are s o) 256	supporte	d in siem c) 254	_	th 3800 e d) 2	_	? ()
74	4) What a) 100		dius of op I	peration o		station ir			change′ 00 mts	?()
75	5) How r a) 1	many pov	wer supp	ly unit do o) 2	es sieme	ens hipath c) 3	n 3800 ca	n accom d) 4		()
76	6) Batter a) X2		supply co	onnected o) X211	to which	pin on m c) X11			-path 380 (100	00()
77	7) What a) SM		me of Dig	gital BRI o) SLMO		iemens F c) SM	•	· ·	? SLCN	()
78	3) Which a) SL		Siemens I	Hipath 3 o) DUIN	800 Sup	ports Cor c) SM		•	OUIT	()
79	,	ON excha	nge, max I	kimum pe o) 600 oh			o resistar 0 ohms		400 ohm	() IS
80	,	al 6000 e Id standb	exchange by I	o) Hot sta	andby	e inmo c) Cha <u>/ E_R</u>	ngeover		lone	()
	1	2	3	4	5	6	7	8	9	10
	а	d	b	b	d	d	а	b	а	d
	11	12	13	14	15	16	17	18	19	20
	d	С	d	b	а	а	а	а	а	а
	21	22	23	24	25	26	27	28	29	30
	а	а	d	d	d	d	d	d	d	d
	31	32	33	34	35	36	37	38	39	40
	d	d	d	d	d	d	d	d	d	d
	41	42	43	44	45	46	47	48	49	50
	С	С	С	b	b	С	С	С	d	d
	51	52	53	54	55	56	57	58	59	60
	d	b	а	а	b	а	а	С	а	а
L	61	62	63	64	65	66	67	68	69	70
	а	а	d	С	С	b	b	d	b	b
	71	72	73	74	75	76	77	78	79	80
- 1	•		h		_			_		h

ST-47: Tetra, GSM-R and LTE

1)	Frequencies all a) 260 - 300 MI b) 260 - 300 MI c) 380 - 400 MI d) None	Hz & 38 Hz & 41	80 - 400 MHz 0 - 430 MHz	bands bands	unication system	ns are	()
2)	a) The stateme	nt is fal	se		ay-signalling app b) The standary ons d) None	lications. atement is true	()
3)	Mobile Train Ra	adio sys	stem installed	in Nag	pur - Itarsi Sectio	on works on		
	frequency a) 260 – 300 M	Hz	b) 410 - 430	MHz	c) 380 - 400 M	Hz d) 314	(- 322 M) Hz
4)	UNIVERSAL E	MERGE	ENCY COMM	UNICA	TION (UEC) Ope	erates on		
	frequency a) 146.2 - 151.4 c) 159.6 - 162.4				b) 260.2 - 300.4 d) both a and c	5 MHz	()
5)	Full form of TE a) Terrestrial To c) Telecom terr	runk Ra	ıdio	-	b) Train emerge d) None	ency trunk Radi	0)
6)	The frequency a) 30 – 300 MH				n is . c) 30 – 300 GHz	z d) 30 – 30	(0 KHZ)
7)	-	munica I0MHz	tion) in VHF f	or India	Planning and Cod in Railways are_ b) 146 - 174 MH d) both a & b		of ()
8)	HF Communica	ation on			c) Full Duplex	des d) all	()
9)	The average ra	inge of		•	and Held set) is c) 1 to 2 Km	d) none	()
10]	In Cellular Com Co-channel Inte a) Time		ce.		b beh		void (None)

11)There should be a minimum overlap in oa) Seamless Handoff for a Roaming Subb) Co-channel Interferencec) Both a & bd) None	·	()
12)Providing Hexagonal shaped cells ensura) Maximum coverage areac) reduced Installation and Maintenance	b) Minimum trans	(smitting sites)
13)In Cellular geometry co channel reuse ra a) D/R = $\sqrt{3N}$ b) D/R = 3N	•	(None)
14)Frequency can be reused after a) N=6 b) N=7		(None)
15)In a Cluster of Cells, the Main Transmitted is located at	er, Receiver and Antenna S b) At the vertex of the ce d) None	()
16) A mobile handset with higher S/N Ratioa) Higher Reuse Factorc) Cannot be decided with given data	is assigned a Channel with b) Lower Reuse Factor d) None	_ ()
17)Typically Handsets nearer to the Cell-cea) Low Frequency Reuse factorc) Cannot be decided with given data	nter are allocated Channels b) High Frequency Reus d) None)
 18)Reasons for using sectored antennas in a) Sector Antennas increase Co-channe b) Sector Antennas reduce Co-channel I c) Sector Antennas reduce Co-channel I d) Sector Antennas increase Co-channe 	I I/F and improve the mean /F and improve the mean S /F and reduce the mean S/I	s/N ratio N ratio)
19)No two adjacent Cells in a Cluster have a) Radio Channels b) Channel free		(d) None)
20)Which agency is primarily responsible fo a) ANSI b) ITU(T)	r development of GSM c) ETSI	(d) None)
21)Mobile station (MS) basically consists ofa) Mobile Equipment (ME) & Subscriberb) IMEI + SIMc) BTS & BSCd) None		()

22)BTS in general consista) TRX (Transeiver)		olever (a) Power A	mplifier d) A	() ()	1
		•			
23)The function of	_	iber related informati c) HLR		()	1
,	b) Handset	•	d) VLR	,	
24)The performs the		-	4) VIIC	()	1
a) Mobile station	,	c) VLR	d) AUC		
25) is a part of the Bas				()	1
a) BTS	b) AUC	c) MSC	d) HLR		
26) is used for sepa				())
a) Duplexer	b) Simplex		d) None		
27)Encryption of transmis		_	N 111 D	())
a) BTS	b) BSC	c) MSC	d) HLR		
28) reserves the			–	())
a) BSC	b) MSC	c) BSS	d) HLR		
29)The Switching part, is				())
a) MSC	b) BSC	c) BSS	d) HLR		
30)Subscriber relevant da	ta are kept in a Data	abase called .		())
a) HLR	b) VLR	c) AUC	d) MSC		
31) protects User Id	lentity and allows a	Secured Transmission	n.	()	,
a) AUC	b) HLR	c) VLR	d) BSC		
32) band, 935-960M	Hz for Up-link (MS to	BTS) and 890-915	MHz for Dowr	า	
link				())
a) GSM-900	b) GSM-1800	c) GSM-1900	d) GSM-2100)	
33)The channel spacing in	n GSM is of Kh	Hz.		())
a) 200 KHz	b) 400 KHz	c) 600 KHz	d) 800 KHz		
34)The Duplex spacing in	GSM will be (be	etween TX and RX).		()	,
a) 45 MHz	b) 55 MHZ	c) 85 MHz	d) 100 MHz		
35)The Air Interface is the	interface between t	he and the MS.		())
a) BTS	b) BSC	c) MSC	d) HLR		
36)The Physical Layer is	a Mb/s Digital C	onnection.		())
a) 2 Mbps	b) 4 Mbps	c) 6 Mbps	d) 8 Mbps		
37)One or more logical ch	annels can be trans	mitted on a cha	annel.	())
a) Physical	b) Logical	c) Network	d) None	•	

38) is used to time	∍ synchronize the ા	mobile static	on.		()
a) SCH	b) BCCH	c) FCI		d) CBCH		
39) is used for tr	-	=			()
a) BCCH	b) SCH	c) FCI	₹	d) CBCH		
40)Full form of ETSI is					()
a) European Teleco			tute			
b) European Techn			44 _			
c) European Teleco			lule			
, ,						
41)Full form of CDMA			· D (()	NA 10° 1 A	()
a) Cada Division M	•	-	rier Detection	-		
c) Code Division M	·	•	de Detection N	nulliple Acce	55	
42)GPRS is					()
a) a data network th	-	Ū				
b) a voice network tc) It comes under 3	-	_	lion GSIVI neti	VOLK		
d) None	G category or evor	lution				
,	CDDC into the av	viotina CCM	anabita atuma		. £	
43)In order to integrate network nodes called		_		a new class o)I 	١
a) packet control ur				port nodes ((GSN)	,
c) gateway GPRS s			d) Both a & d		- ,	
44)The internal backbo	one of GPRS netwo	ork is			()
a) An IP based netv			TN Network	-	`	,
c) Circuit switched r		d) Bot				
45)Class A mobile stat	ion in GPRS Netw	ork			(١
a) it can only use or			en time		(,
b) it supports simult		•		al GSM servi	ces	
c) Simultaneous reg	jistration of GPRS	& GSM (an	d usage) is no	ot possible		
d) None						
46)Class B mobile stat	ion in GPRS Netw	ork			()
a) it can only use or	ne of the two servi	ces at a give	en time		•	,
b) it supports simult	aneous operation	of GPRS an	d convention	al GSM servi	ces	
c) Simultaneous reg	jistration of GPRS	& GSM (and	d usage) is no	ot possible		
d) None						

 a) it can only use one of the two services b) it supports simultaneous operation c) Simultaneous registration of GPRS d) None 	ces at a given time of GPRS and conventional GSM ser	(vices)
48)Signalling from a GSN to a MSC is do a) GGSN network b) SGSN network	•	(None)
49)The Range of Data Rates provided bya) from 16 to 64kbpsc) from 9.6 to 171 kbps	/ GPRS Network b) from 64 to 2048kbps d) None	()
50)In order to upgrade from GSM to GPR	RS the new hardware to be provided	in BSC	
is a) PDP unit b) PCU	c) Both a & b d) N	(None)
51)The PCU (Packet control unit) provide a) Signalling required for voice c) a physical and logical data I/F	es to the base station subsystem b) control channels d) None	()
52)WLL is also called as a) Radio in the loop (RITL) c) Both a & b	b) Fixed-radio access (FRA) d) None	()
a) The fixed subscriber unit (FSU)b) The radio subscriber unit (RSU)c) The fixed wireless network interfaced) None		'k. ()
54)To ensure better trade off to fulfil the r	requirements of high capacity with lov	w servic	ce
fee, the data rate of channel is fixed a a) Up to 16Kbps b) Up to 32 Kb	ops c) Up to 64 Kbps d) None	()
55)WLL is a system that connects subscr a) PLMN b) PSTN	ribers to the c) IPX d) ISDN	()
a) cordless access systems c) fixed cellular systems	b) proprietary fixed radio acces	(ss)
57)The main challenge involved in impler a) expansion of landscape in service t c) costly equipment		()

58)GSM-R is the communication standard chosen by ()
	a) EIRENE	b IEEE)	c) EIA/TIA	d) None		
59)MTC is call from the						
	a) Train driver to contr	oller	b) Controller to train driver			
	c) Train driver to train	guard	d) Train driver to st			
60)GMS-R provides com	munication up to a s _l	peed of		()
	a) 500 km/h	b) 400 km/h	c) 300 km/h	d) 200 km/h		

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
С	b	d	d	а	а	b	d	а	b
11	12	13	14	15	16	17	18	19	20
а	d	а	b	b	b	b	b	С	b
21	22	23	24	25	26	27	28	29	30
а	d	а	а	а	а	а	а	а	а
31	32	33	34	35	36	37	38	39	40
а	а	а	а	а	а	а	а	а	а
41	42	43	44	45	46	47	48	49	50
С	а	d	а	b	а	С	С	С	b
51	52	53	54	55	56	57	58	59	60
С	С	а	а	b	d	а	а	а	а

ST-48: RAIL NET, WI-FI SYSTEM, PRS, UTS & FOIS

	ine is the phy	sical path over which	n a message travels.		()
	(a) Protocol	(b) Medium	(c) Signal	(d) All		
2)	Set of rules which is a network	,			ross ()
	(a) Protocol	(b) Medium	(c) Signal	(d) All		
3)	Frequency of failure 8	& network recovery t	ime after a failure is	measured		
	as (a) Performance	(b) Reliability	(c) Security	(d) Feasibility	(,/)
4)	,	•			,	`
4)	In data communication (a) Unicode	on, coding used for s (b) ASCII	ending information is (c) Bipolar	(d) All	()
5)	Which topology uses	a multipoint connec	tion?		()
	(a) Mesh	(b) Star	(c) Bus	(d) Ring		
6)	refers to the	structure or format	of the data, meaning	the order		
	in which they are pres (a) Semantics	sented. (b) Syntax	(c) Timing	(d) All	()
	. ,		()	,		
/)	In mode, each st	ation can both trans	mit and receive but i	not at the sam	e time	
٠,						
.,	When one device is s		in only receive, and v	vice versa.)
.,				vice versa.		
	When one device is s (a) Simplex mode (c) Full duplex mode	sending, the other ca	n only receive, and v (b) Half dupl (d) None.	vice versa.		
	When one device is s (a) Simplex mode	ending, the other ca	n only receive, and v (b) Half dupl (d) None.	vice versa. ex mode		
8)	When one device is so (a) Simplex mode (c) Full duplex mode Data flow between two	ending, the other ca o devices can occur (b) half-duplex	in only receive, and v (b) Half dupl (d) None. in a way. (c) full-duplex	vice versa. ex mode (d) All		
8)	When one device is so (a) Simplex mode (c) Full duplex mode Data flow between two (a) simplex	ending, the other ca o devices can occur (b) half-duplex	in only receive, and v (b) Half dupl (d) None. in a way. (c) full-duplex	vice versa. ex mode (d) All ork.)
8)	When one device is so (a) Simplex mode (c) Full duplex mode Data flow between two (a) simplex refers to the plants.	ending, the other ca o devices can occur (b) half-duplex	in only receive, and v (b) Half dupl (d) None. in a way. (c) full-duplex angement of a netwo	vice versa. ex mode (d) All ork.)
8)	When one device is so (a) Simplex mode (c) Full duplex mode Data flow between two (a) simplex refers to the place (a) Data flow	ending, the other ca o devices can occur (b) half-duplex hysical or logical arra	in only receive, and very (b) Half duple (d) None. This is a way. (c) full-duplex angement of a network (b) Mode of operation (d) None	vice versa. ex mode (d) All ork.	(()
8)	When one device is so (a) Simplex mode (c) Full duplex mode Data flow between two (a) simplex refers to the plot (a) Data flow (c) Topology	ending, the other ca o devices can occur (b) half-duplex hysical or logical arra	in only receive, and very (b) Half duple (d) None. This is a way. (c) full-duplex angement of a network (b) Mode of operation (d) None	vice versa. ex mode (d) All ork.	(()
8) 9)	When one device is s (a) Simplex mode (c) Full duplex mode Data flow between tw (a) simplex refers to the pl (a) Data flow (c) Topology is a collect	ending, the other ca to devices can occur (b) half-duplex hysical or logical arra ion of many separat (b) An internet	in only receive, and very (b) Half duple (d) None. Tin a way. (c) full-duplex angement of a network (d) None e networks. (c) LAN	vice versa. ex mode (d) All ork. on (d) None	(()
8) 9)	When one device is s (a) Simplex mode (c) Full duplex mode Data flow between tw (a) simplex refers to the pl (a) Data flow (c) Topology is a collect (a) WAN The process-to-proce layer.	ending, the other can to devices can occur (b) half-duplex hysical or logical arra ion of many separat (b) An internet	in only receive, and very (b) Half duple (d) None. Thin a way. (c) full-duplex angement of a network (b) Mode of operation (d) None e networks. (c) LAN attire message is the receiver.	vice versa. ex mode (d) All ork. on (d) None responsibility of	((for the)
8) 9)	When one device is s (a) Simplex mode (c) Full duplex mode Data flow between tw (a) simplex refers to the pl (a) Data flow (c) Topology is a collect (a) WAN The process-to-proce layer.	ending, the other ca to devices can occur (b) half-duplex hysical or logical arra ion of many separat (b) An internet	in only receive, and very (b) Half duple (d) None. Thin a way. (c) full-duplex angement of a network (b) Mode of operation (d) None e networks. (c) LAN attire message is the receiver.	vice versa. ex mode (d) All ork. on (d) None	((for the)
8) 9) 10)	When one device is s (a) Simplex mode (c) Full duplex mode Data flow between tw (a) simplex refers to the pl (a) Data flow (c) Topology is a collect (a) WAN The process-to-proce layer.	co devices can occur (b) half-duplex hysical or logical arra ion of many separat (b) An internet ess delivery of the er (b) Application	in only receive, and very (b) Half duple (d) None. Thin a way. (c) full-duplex angement of a network (b) Mode of operation (d) None The enetworks. (c) LAN attre message is the recommendation (c) Physical	vice versa. ex mode (d) All ork. on (d) None responsibility of	((for the)

13)	As the data packet m	oves from the	upper	to the lower layers,	headers are _	_()
	(a) Added	(b) Removed		(c) Rearranged	(d) Modified		
14)	When a host on netw	ork A, sends a	mess	age to a host on net	twork B, which	1	
	address does the rou	ter look at?				()
	(a) Port	(b) Logical		(c) Physical	(d) None		
15)	The layer is respon	nsible for movi	ing fra	mes from one hop t	o the next	()
	(a) Physical	(b) Data link		(c) Transport	(d) None		
16)	If only 1 bit of informa	ition can be tra	ansmitt	ted over the data tra	nsmission me	dium	
	at a time then it is cal	led				()
(a) Serial communica		tion		(b) Parallel communication			
	(c) Both			(d) None			
17) If more than 1 bit of information is transmitted over the data transmission me			edium				
	at a time then it is cal	led				()
	(a) Serial communica	ation		(b) Parallel communication			
	(c) Both			(d) None			
18)	Networks that connec	ct computers a	nd res	ources together in a	building or bu	uildings	;
	close together					()
	(a) LAN	(b) WAN		(c) MAN	(d) PAN		
19)	Networks that connec	t LANs togeth	er with	nin a city.		()
	(a) LAN	(b) WAN		(c) MAN	(d) PAN		
20)	communication system	m linking LANs	s betw	een cities, countries	& continents	()
	(a) LAN	(b) WAN		(c) MAN	(d) PAN		
21)	Layer-3 in OSI model	is called				()
	(a) Physical layer	(b) Data layer	-	(c) Network layer	(d) Transpor	t layer	
22)	is a type of transn	nission impairr	nent ir	n which the signal lo	ses strength d	lue to	
	the different propagat	ion speeds of	each f	requency that make	s up the signa	ıl ()
	(a) Attenuation	(b) Distortion		(c) Noise	(d) Decibel		
23)	A signal is	s a composite	analog	g signal with an infin	ite bandwidth.	. ()
	(a) Digital (b) An	alog	(c) eith	ner (a) or (b)	(d) neither (a	ı) nor (l	၁)
24)	Which encoding meth	od uses alterr	nating (positive & negative v	values for 1s?	()
•	(a) NRZ-I	(b) RZ	(c) Ma	nchester	(d) AMI		-

25)	In a scheme, a	all the signal levels a	re on one side of the time a	xis,	
	either above or below	<i>I</i> .		()
	(a) Polar	(b) Bipolar	(c) Unipolar	(d) All	
26)	In schemes, the	voltages are on the b	ooth sides of the time axis. I	For example,	the
	voltage level for 0 car	n be positive and the	voltage level for 1 can be r	negative.()
	(a) Polar	(b) Bipolar	(c) Unipolar	d) All	
27)	In the level of	the voltage determin	es the value of the bit.	()
	(a) NRZ-I (b) NF	RZ-L (c) either (a)	or (b) (d) neither (a	ı) nor (b)	
28)	In Manchester and di	fferential Mancheste	r encoding, the transition at	the middle o	of
·	the bit is used for _	·	-	()
	(a) Bit transfer	(b) Baud transfer	(c) Synchronization	(d) None	
29)	Inencoding,	we use three levels:	positive, zero, and negativ	e. ()
·	(a) Unipolar	(b) Bipolar		(d) None	•
30)	substitutes e	ght consecutive zero	os with 000VB0VB.	()
,	(a) B4B8	(b) HDB3	(c) B8ZS	(d) None	,
31)	category-6 cable co	ntains how many pai	rs of conductors	()
0.,	(a) 1 pair		(c) 3 pair	(d) 4 pair	,
32)	Example of unguided	. ,			١
32)	(a) Co-axial cable	ilicula is	(b) Fiber optic cable	()
	(c) Twisted pair cable	:	(d) Microwave		
331	,			1	١
33)	Line coding used in Is (a) 2B1Q	(b) HDB-3	(c) Pseudoternary	(d) AMI)
		,	. ,	(4) / (10)	
34)			If-clocking line encoding.	())
	(a) 2B1Q	(b) HDB-3	(c) Manchestor	(d) AMI	
35)	Example of bipolar lir	ne coding is		()
	(a) 2B1Q	(b) HDB-3	(c) Manchestor	(d) All	
36)	pulse code modulation	n technique is used	in	()
	(a) analog to analog	conversion	(b) digital to analog conver	rsion	
	(c) digital to digital co	nversion	(d) analog to digital conver	rsion	
37)	Example of analog to	analog conversion i	S	()
	(a) amplitude modula	tion	(b) frequency modulation		
	(c) phase modulation	1	(d) all		

38)	Example of digital to	analog conversion is	}		()
	(a) ASK	(b) FSK	(c) PSK	(d) ALL		
39)	The value of signal to	noise ratio(SNR) sh	nould always be		()
	(a) Low	(b) Medium	(c) High	(d) None		
40)	Attenuation loss is me	easured in			()
	(a) Decibel	(b) Volts	(c) Watt	(d) Ohm		
41)	V.35 interface contain	ns how many pins			()
	(a) 18 pins	(b) 25 pins	(c) 34 pins	(d) 40 pins		
42)	HDLC is an acronym	for			()
	(a) High-duplex line of	ommunication	(b) Half-duplex dig	ital link combir	nation	
	(c) High-level data lin	k control	(d) Host double-lev	el circuit		
43)	Flow control is neede	d to prevent	.		()
	(a) Overflow of the se	ender buffer	(b) Overflow of the			
	(c) Bit errors		(d) Collision betwe	en sender & re	eceiver	
44)	When data and acknowledge	owledgment are sent	t on the same frame	, this is called		
		(h) Dieser en adriese	(a) Distant ha alsia s	(d)	()
	(a) Back packing				uea	
45)	The shortest frame in				()
	(a) Information	(b) Management	(c) Supervisory	(d) None		
46)	Which error detection			etic?	()
	(a) Simple parity chec(c) Two-dimensional		(d) CRC			
47)			()		•••	,
47)	Which error detection (a) Two-dimensional		(b) CRC	bit per data un	iit()
	(c) Simple parity chec		(d) Checksum			
48)	Which error detection		. ,		(١
40)	(a) CRC	i metrod involves po	(b) Simple parity cl	neck	(,
	(c) Two-dimensional	parity check	(d) Checksum			
49)	The Hamming code is	s a method of			()
,	(a) Error detection		 (b) Error correction	l	•	,
	(c) Error encapsulation	on	(d) (A) and (B)			
50)	What is the efficiency	of 4B/5B block enco	oding?		()
	(a) 60 percent	(b) 80 percent	(c) 20 percent	(d) 40 perce	nt	

51)	What is the hexadecii 01010101 00011000 (a) 5A-11-55-18-AA-0	10101010 00001111			10001)
	(c) 5A-81-BA-81-AA-0		(d) 5A-18-5A-18-55			
52)	By default all the port	s in a switch are in (b) VLAN1	(c) VLAN2	(d) VLAN3	()
53)	VLAN can be created (a) 1 to 100	from toran (b) 1 to 500	ge (c) 2 to 1001	(d) All	()
54)	Networking standard network. (a) IEEE 802.1Q	that supports Virtual (b) IEEE G.703		n Ethernet (d) ALL	()
55)	Power over Ethernet (a) IP camers	(POE) technology is (b) Switches	used in (c) Access points	(d) All	()
56)	IEEE 802.3u supports (a) 100 mtrs	s a distance of (b) 200 mtrs	(c) 300 mtrs	(d) 500 mtrs	()
57)	In 10 base-F, 10 indic (a) 10 kbps	cates (b) 10 Mbps	(c) 10 Gbps	(d) 10 Tbps	()
58)	In 10 base 5, 5 indica (a) 5 mtrs	tes (b) 50 mtrs	(c) 500 mtrs	(d) 5000 mtrs	(S)
59)	Fast Ethernet indicate (a) 10 Mbps	es speed of (b) 100 Mbps	(c) 1000 Mbps	(d) None	()
60)	CSMA/CA is used in (a) 802.3	IEEE standard (b) 802.4	(c) 802.5	(d) 802.11	()
61)	Example of random a (a) CSMA	ccess protocol (b) CSMA/CD	(c) CSMA/CA	(d) ALL	()
62)	Identify the class of IF (a) Class A	P address 191.1.2.3. (b) Class B	(c) Class C	(d) Class D	()
63)	A subnet mask in class (a) 128	ss B has nineteen 1s (b) 8	. How many subnets (c) 32	does it define (d) 64	⊖()
64)	Given the IP address	18.250.31.14 and th	e subnet mask 255.	255.0.0,		
	what is the subnet (not) (a) 18.9.0.14	etwork) address? (b) 18.0.0.14	(c) 18.31.0.14	(d) 18.250.0.	(0)

65) is a client-server program that provides an IP address, subnet mask,						
	IP address of a route	r, and IP address of	a name server to a	computer.	()
	(a) NAT	(b) DHCP	(c) CIDR	(d) ISP		
66)	In, each pag	cket of a message n	eed not follow the sa	me path from		
	sender to receiver.				()
	(a) The virtual approa	ach to packet switchi	ng			
	(b) The datagram app	proach to packet swi	tching			
	(c) Message switchin	g				
	(d) None of the above	9				
67)	In routing, tl	ne mask and destina	ition addresses are b	oth 0.0.0.0		
	in the routing table.				()
	(a) Default		(b) Next-hop			
	(c) Network-specific		(d) Host-specific			
68)	In which type of switch	hing do all the pack	ets of a message foll	ow the same		
	channels of a path?				()
	(a) Virtual circuit pack	ret switching	(b) Message switching			
	(c) Datagram packet	switching	(d) None of the abo	ve		
69)	A routing table contain	ns			()
	(a) The destination no	etwork ID	(b) The hop count to reach the net			
	(c) The router ID of the	ne next hop	(d) All the above			
70)	An area border route	r can be connected t			()
	(a) Only another route	er	(b) Only another ne	twork		
	(c) Only another area	border router	(d) Another router of	or another net	work	
71)	Which type of networ	k using the OSPF pr	otocol can have five	routers attach	ned	
	to it?				()
	(a) Transient	(b) Stub	(c) Point-to-point	(d) All the al	oove	
72)	Which layer produces	s the OSPF message	e?		()
	(a) Data link	(b) Transport	(c) Application	(d) Network		
73)	OSPF is based on				()
	(a) Distance vector ro	outing	(b) Path vector rout	ing		
	(c) Link state routing		(d) (A) and (B)			
74)	is a multica	asting application.			()
-	(a) Teleconferencing		(b) Distance learning	ıg		
	(c) Information disser	nination	(d) All the above			

75)	Dijkstra's algorithm is	used to			()
	(a) Create LSAs		(b) Flood an interne	t with informa	tion	
	(c) Create a link state	database	(d) Calculate the ro	uting tables		
76)	RIP is based on				()
	(a) Link state routing		(b) Dijkstra's algorit	hm		
	(c) Path vector routing	g	(d) Distance vector	routing		
77)	Dial-up modems are				()
,	(a) Synchronous	(b) Simplex	(c) Asynchronous	(d) No	ne	,
78)	Modem pair required	for WAN connectivit	y over leased lines a	re	()
	(a) Asynchronous V.3	35 + G.703	(b) Synchronous V.	35 + G.703		
	(c) Synchronous V.35	5 + V.35	(d) None of the abo	ve		
79)	ADSL modem uses i	modulation method			()
,	(a) QAM + FDM	(b) TDM+FSK	(c) FDM+FSK	(d) All	`	,
80)	HDSL modem uses li	ne coding technique			()
,	(a) HDB3	(b) 2B1Q	(c) Manchester	(d) AM	11	,
81)	DSLAM stands for				()
,	(a) Digital Synchrono				•	,
	(b) Digital line access	multiplexer				
	(c) Digital subscriber	line access multiple	(er			
	(d) None of the above	e				
82)	Media convertor is us	ed when data transr	nission distance is		()
	(a) Less than 100 mt	rs	(b) More than 100 n	ntrs		
	(c) More than 50 mtrs	3	(d) all			
83)	In DSLAM splitte, for	voice communication	nfilter is used	d	()
	(a) low pass filter	(b) high pass filter	(c) both	(d) none		
84)	In ADSL modem, for	data transmission	filter is used		()
	(a) low pass filter	(b) high pass filter	(c) both	(d) none		
85)	Short haul modems a	ıre used when distan	ice is upto	_	()
	(a) 15 kms	(b) 20 kms	(c) 50 kms	(d) 100 kms		
86)	Asynchronous moder	ns uses m	odulation technique		()
Ź	(a) ASK	(b) FSK		(d) ALL	-	•

87)	Dial-up modems are		less network commu	unication over	,	
	short distances using (a) Radio signal		(b) Infrared signal		()
	(c) Ultraviolet signal		(d) Both a and b			
88)	Access point consists (a) built-in network ac		(b) antenna		()
	(c) radio transmitter	.ap.10.	(d) all			
89)	IEEE standard for WI	_AN is			()
	(a) 802.11	(b) 802.2	(c) 802.3	(d) 802.10		
90)	Wireless Application technologies such as		s wireless communic	ation	()
	(a) GSM	(b) 4G	(c) GPRS	(d) ALL		
91)	Access Protocol for V	VLAN is	(1) 00144 (07		()
	(a) CSMA (c) CSMA / CA		(b) CSMA / CD (d) None			
92)	How many character	length is SSID name)		()
	(a) 8	(b) 16	(c) 32	(d) 64		
93)	BSSID of access poir	nt is			()
	(a) 48 bit IP address		(b) 32 bit MAC add			
	(c) 48 bit MAC addres		(d) None of the abo	ive		
94)	RF band used for WL (a) 0.4 GHz	.AN is (b) 2.4 GHz	(c) 1.2 GHz	(d) None	()
95)	The bandwidth availa	ble in 802.11a WLAI	N is		()
	(a) 2 Mbps	(b) 54 Mbps	(c) 11 Mbps	(d) 108 Mbps	3	
96)	The IEEE 802.11d sta	andare WLAN is also	called as		()
	(a) Mobile wimax	(b) Fixed wimax	(c) bluetooth	(d) none		
97)	WPA (wi-fi protected	•		_	()
	(a) 16 bit	(b) 32 bit	(c) 64 bit	(d) 128 bit		
98)	WPA uses a message			(al) Alla at	()
	(a) Michael	(b) John	(c) Antony	(d) Albert		
99)	Wireless access poin (a) SSID	ts broadcast themse (b) MAC address	-	(d) all	()
	(a) 001D	(D) INITO addices	(U) II auuless	(d) all		

100) Default IP address of	f access point is			()
(a) 192.168.1.1	(b) 10.195.2.20	(c) 192.168.0.1	(d) both a 8	ı C	
101) Ethernet provides ac	cess to the network i	using		()
a) CSMA/CA	b) CSMA	c) OFDM	d) CSMA/C	D	
102) Ethernet networks ty	pically will not be fou	nd in Topolo	gy	()
a) Ring	b) Mesh	c) Star	d) Bus		
103) 100 BASE-T type of	Ethernet uses	cable		()
a) Coaxial	b) Optical Fiber	c) Switch board	d) UTP/STF)	
104) The maximum distar	nce supported by UTF	P/STP cable		()
a) 100 Meters	b) 200 Meters	c) 500 Meters	d) 2 KM		
105) Ethernet Technology	usually suffers from			()
a) Noise b) Att	enuation c) Hig	h resistance d) Broadcast/0	Collisio	ns
106) 10 Base-T uses	cable			()
a) Coaxial	b) Optical Fiber	c) FS	d) UTP/STF)	
107) In 10 BASE-T the n	naximum cable run			()
a) 100 Meter	b) 185 Meter	c) 500 Meter	d) 5 KM		
108) In 1000 BASE-SX th	e maximum cable ru	ın		()
a) 100 Meter	b) 185 Meter	c) 500 Meter	d) 2 KM		
109) 10 Gigabit Ethernetty	pe of Ethernet suppl	lies bits per seco	ond	()
a) 1000 Billion	b) 100 billion	c) 10 billion	d) 1 Billion		
110) The length of the MA	C address			()
a) 32 bit	b) 128 bit	c) 16 bit	d) 48 bit		
111) Traditional Network S	Switch operate at			()
a) Layer-2	b) Layer-3	c) Layer-1	d) Layer-4		
112) The Terminal Server	allows			()
a) RS232 to 10/100	Base-T Ethernet	b) RS232 to RS232			
c) Ethernet to Ethern	et	d) RS232 to Paralle	el		
113) NeTS (Network Tern	ninal Server) is a			()
a) Switch	b) Router	c) Terminal Server	d) Al	l	
114) The hardware (or) M	AC address is burnt	on which part of NIC		()
a) RAM	b) ROM	c) Flash	d) N	√RAM	
115) A switch controls flow	w of data using	address		()
a) IP	b) Port	c) MAC	d) No	one	
116) Routers are used to	connect			()
a) Similar LANs	b) Dissimilar LANs	c) Different netwo	orks d) No	one	

117)	100 BASE-TX typ	oe of Fast Ethernet	runs	over			()
	a) UTP/STP k	o) Coaxial cable	c) F	iber optical cab	le d) F	Radio wa	ves	
118)	In coaxial Etherno	ets, the transmission	on is				()
	a) Full duplex	b) Half duplex	(c) Simplex	d) <i>A</i>	All		
119)	The standard cor	nplaint & cost effec	ctive s	olution for conn	ecting du	mb termi	nal	
	and thin clients a	at remote site for P	RS –	UTS integration	is		()
	a) Statmux	b) Terminal Serve	er	c) DCM	d) N	NeTS		
120)	Frequency Band	of VSAT					()
	a) C–Band	b) KU–Band		c) Extended C	–Band	d) All		
121)	Wired Ethernet st	tandardized under	IEEE				()
	a) 802.11	b) 802.16		c) 802.3	d) 8	302.4		
122)	1000BASE-T (Gig	gabit Ethernet) sta	ndardi	zed under IEEE	Ē		()
	a) 802.3u	b) 802.3ab		c) 802.3z	d) N	None		
123)	All 4 pairs are use	ed in Ethernet tran	smiss	ion			()
	a) 10 Mbps	b) >1000Mbp	s	c) 100 Mbps	d) <i>A</i>	АII		
124)	CRC checks are	done at Layer					()
	a) Layer-2	b) Layer-3		c) Layer-1	d) L	ayer-4		
125)	Collisions are total	ally controlled in a	LAN u	sing device			()
	a) HUB	b) SWITCH		c) ROUTER	d) F	FIREWAL	.L	
126)	The difference be	tween traditional r	outer	and L-3 switch			()
	a) Router has all	Ethernet ports only	y	b) L-3 switch h	as all Eth	ernet po	rts only	,
	c) Functional diffe	erence		d) None				
127)	VSAT Topology						()
	a) Star b) Mesh c) Ring d) Star and	Mesh					
128)	Railnet is a						()
	a) Extranet	b) Internet		c) Intranet	d) F	Piconet		
129)	IP Addressing sc	heme for Railnet is	3				()
	a) Public	b) Private		c) Automatic p	rivate	d) No	ne	
130)	IP Address is use	ed in Railnet					()
	a) 10 series	b) 192 series		c) 172 series	d) 1	series		
131)	IP nos. allotted to	Web server on Ra	ailnet a	as a uniform me	easure are	9	()
	a) 192.X.2.19	b) 10.x.x.19		c) 10.x.2.19	d) 1	72.168.x	c.19	
132)	IP nos. allotted to	Router on Railnet	as a	uniform measur	e are		()
	a) 192.X.2.1	b) 10.x.x.1		c) 10.x.2.1	d) 1	72.16.x.	1	

133) Subnet mask used for Railnet is				()
a) 255.0.0.0	b) 255.255.0.0	c) 255.255.255.0	d) 255.255.	255.128	3
134) The Railnet domain is				()
a) railnet.com	b) railnet.in	c) railnet.gov.in	d) railnet.or	g	
135) Internet gateways of			()	
a) Delhi/Mumbai	b) Kolkata	c) Madras	d) All		
136) Railnet uses				()
a) Dedicated leased lines		b) Dialup lines			
c) BSNL/VSNL isdn lines		d) RAILTEL MPLS			
137) FOIS stand for				()
a) FREIGHT OPERA	ATIONS INFORMATI	ON SYSTEM			
b) FLIGHT OPERAT	IONS INFORMATIO	N SYSTEM			
c) FREIGHT OPERA	ATIONS INTERNET	SYSTEM			
d) None					
138) FOIS network is for				()
a) Rack management system		b) Terminal management system		n	
c) RR generation		d) All			
139) Architecture of FOIS	network is based or	1		()
a) Star topology b) Mesh topology c) Mixed (Star + Mesh) d) I			esh) d) No	one	
140) Applications on FOIS network on				()
a) Master – Slave mode		b) Main frame mode			
c) Client – Server mode		d) All			
141) Back bone connectivity of FOIS network is on				()
a) VSAT links b) 64 Kbps data lines c) 2 Mbps data lines			data lines	d) All	
142) Application Servers of FOIS are located at				()
a) Divisional Hq	b) Zonal Hq	c) Rly Board	d) CRIS / N	DLS	
143) The additional services provided through PRS network are				()
a) IVRS	b) POET	c) Rapid display	d) All		
144) The PRS network is operated through nos. of regional centers.			rs.	()
a) 4	b) 5	c) 3	d) 1		
145) The main objective of PRS in Indian Railway is to provide				()
a) reserved tickets b) un reserved tickets			ets		
c) Freight booking	d) flight booking				
146) CONCERT is developed by				()
a) Rly Board	b) CRIS	c) Individual Railwa	ays d) IR	ISET	

147) The main objective of UTS in Indian Railway is to provide)
	a) reserved tickets			b) un reserv	ed ticke	ets		
	c) Freight booking			d) flight bool	king			
148)	UTS will provide the	facility	to purchase U	Inreserved Ti	cket		()
	a) 4 Months advance	:		b) 3 Months	advand	е		
	c) 3 days' advance			d) 1 day adv	ance			
149)	The Passengers can	cancel	their UTS ticl	kets from any	station	atleast	()
	a) 1 day advance			b) 3 days ad	vance			
	c) Any day			d) 3 Months	advand	е		
150)	On the day of journe	y, the L	JTS ticket can	be cancelled	from s	tation from w	nich	
	the journey was to co	mmen	ce.				()
	a) from any station			b) the journe	y starti	ng station		
	c) the journey ending	station	า	d) Station w	here tic	ket purchase	d	
151)	The backend archited	cture of	f UTS is				()
	a) 3 tiered	b) 4 ti	ered	c) 2 tiered		d) 1 tiered		
152)	UTS can provide con	nputeri	zed unreserve	ed tickets thro	ugh		()
	a) hand held termina	ls		b) smart car	d			
	c) automatic vending	machi	nes	d) All				
153)	Application is dividing	g into m	nodules				()
	a) ticketing subsyster	m	b) fare	c) UDM/TDN	/	d) All		
154)	UTS back end develo	oped us	sing				()
	a) Sybase	b) C+	+	c) UNIX		d) All		
155)	The Dynamic protoco	ol used	for unification	of PRS & UT	ΓS is		()
	a) RIP	b) OS	PF	c) EIGRP		d) None		
156)	The round trip time for	or smoo	oth working be	etween client	termina	l and server i	s ()
	a) 20 - 40m sec	b) 60	- 80 m sec	c) 00 - 110 r	n sec	d) 130 - 150	m sec	
157)	Tier 2 location in an a	area sh	all be limited	to %	of total	area	()
	a) 4 – 5 %	b) 100) %	c) 50 %		d) 90 %		
158)	Number of locations	per are	a shall not ex	ceed			()
	a) 30	b) 50		c) 70		d) 60		
159)	Topology used for Pf	RS & U	TS unification	is			()
	a) Inverted Tree	b) Pai	rtial Mesh	c) Mesh	d) Co	mbination of a	a & b	
160)	UTS means						()
	a) Unit Ticketing syst	em		b) Unique Ti	cketing	system		
	c) Unified Ticketing s	ystem		d) Unreserved Ticketing system				

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
b	а	b	а	С	b	b	d	С	b
11	12	13	14	15	16	17	18	19	20
а	d	а	b	b	а	b	а	С	b
21	22	23	24	25	26	27	28	29	30
С	b	а	d	С	а	b	С	b	С
31	32	33	34	35	36	37	38	39	40
d	d	а	С	b	d	d	d	С	а
41	42	43	44	45	46	47	48	49	50
С	С	b	С	С	b	С	а	d	b
51	52	53	54	55	56	57	58	59	60
а	b	С	а	d	а	b	С	b	d
61	62	63	64	65	66	67	68	69	70
d	b	b	d	b	b	а	а	d	d
71	72	73	74	75	76	77	78	79	80
а	d	С	d	d	d	С	b	а	d
81	82	83	84	85	86	87	88	89	90
С	b	а	b	а	b	d	d	а	d
91	92	93	94	95	96	97	98	99	100
С	С	С	b	b	b	d	а	а	d
101	102	103	104	105	106	107	108	109	110
d	d	d	а	b	d	а	С	С	d
111	112	113	114	115	116	117	118	119	120
а	а	d	b	b	С	а	b	С	d
121	122	123	124	125	126	127	128	129	130
С	b	b	d	b	b	b	С	b	а
131	132	133	134	135	136	137	138	139	140
С	С	С	С	d	d	а	d	С	С
141	142	143	144	145	146	147	148	149	150
d	d	d	а	а	b	b	С	а	b
151	152	153	154	155	156	157	158	159	160
а	d	С	а	b	d	а	С	С	d

ST-49: TRAIN TRAFFIC CONTROL

1)	In RE area Emergend	cy Control HQ equipr			()
	a) Section Controllerc) Traction Power Co	ntroller	b) Deputy Chief Cod) Traction Loco Co			
٥)	·		,	n ili Oli c i	,	,
2)	Remote control works a) WPA			d) DTMF	()
3)	Role of S&T in Contro	·	,	,	()
-,	a) To provide commu			e efficient train	` ocontro	, ol
	c) To provide coopera	ation between depart		d) All		
4)	The function of prope a) TPC	r utilization of rolling b) TLC	stock comes under c) RC	d) All	()
5)	Efficient utilization of a) TLC	Engine power falls u b) Dy. CTO	nder c) TPC	control.	()
6)	Power Controller in e a) Section	lectrified sections is b) TLC	called as c) TPC	_Controller. d) All	()
7)	Trains movements in a) Test room		ular day can be had t c) Reservation char		()
8)	Railway control comma) Point to point	nunication circuits ar b) Party to line	e of c) Omnibus	type circuits. d) All	()
9)	Type of signaling sys	tem suitable for cont b) RD		d) DTMF	()
10)	Emergency control so a) 1	ockets are provided o	on rail posts at k c) 3	m intervals. d) 4	()
-	Name any one contro a) Section	-			()
12)	No. of tones used in I	OTMF system			()
	a) 4	b) 8	c) 12	d) 16		
13)	Maximum no. of way a) 97	station codes availal b) 98	ble in DTMF system. c) 99	d) 100	()
14)	Presently, there are_	control c	ommunication syste	ms working on	UG	
	cable media		\ 0050	1\ A.II	()
	a) Equalizer type		•	d) All		
15)	a) Loading	uad cable is eliminate b) Balancing		ifier system. d) None	()
16)	i	s an additional facilit	y in Equalizer amplif	ier system.	()
,	a) Remote Monitoring c) Automatic by-pass)	b) 8 way Intercom d) All	•	`	,

17)	The dual power supp a) Working of the equ c) Ringing of way star	ipment	b) Charging the		()
18)	SOS code is sent by a) Test room equipme c) Way station equipme	ent	room equipment b) Controller's ed d) All		()
19)	In addition to speech a) Decoder				()
20)	In addition to Control a) Decoder	telephone a DTMF_ b) Encoder			()
21)	A speech conversion a) Level matching c) 4 wire to 2 wire cor		b) Impedance m d) All	atching	()
22)	DTMF signal normal a) 0 dBm	output level in Contro b) 0 to 20 dBm)
23)I	Equipment used in Ra in CCEO system. a) STM 1	iltel's OFC control co	•	d)	()
24)	LTE can usea) 40	b) 80	no. of 2-wire	e telephones. d) 20	()
25)	Maximum no. o a) 2	f control telephones b) 5	can be connected c) 6	d to one MTWE. d) 8	()
26)	Operating voltage red a) 12V	quired for CCEO syst b) 24V	tem is c) 36V	d) 48V	()
27)	Dialling facility is not	available in telephon	es connected to	equi	ipment	
	of CCEO. a) CRE	b) TRE	c) LTE	d) MTWE	()
28)	Telephones having dangle a) Control	ialling facility are kno b) Magneto	own as c) Auto	_ telephones d) TDCT	()
29)	2-wire telephone lines	s connected to LTE of	can be extended	up to a distance		
	of a) 1 Km	b) 2 Km	c) 4 Km	d) 8 Km	()
30)	2-wire telephone lines	s connected to MTW	E can be extende	ed up to a distand	e	
	of a) 1 Km	b) 2 Km	c) 4 Km	d) 8 Km	()
31)	TWA is used where _				()
	a) More than 4 controboth a & b	ol telephones are to b		RPE is provided None		

32)	Radio patching in CC	EO system can be d	one remotely from _	<u> </u>	()
	a) TRE	b) CRE	c) LTE	d) TWA			
33)	Input and output impe a) 600	edance of equalizer t b) 470	ype VF repeater is _ c) 1120	Ohms d) 150	()
34)	Main advantages of E a) Automatic bypassir b) Reversal of amplific c) Loading and conde d) All	ng er direction while pat	tching is not required			_()
35)	4-way amplifier is ava a) Conventional repea c) CCEO		system. b) Equalizer type re d) Overhead line	peaters	()
36)	Mention an extra facil a) Remote monitoring c) 8 way intercom	-	lizer amplifier syster b) In built Oscillator d) All		()
37)	Maximum Tx & Rx am a) 12 dBm	nplifier gain that can b) 24 dBm	be set in Equalizer a c) 5 dBm	amplifier is d) 20 dBm	()
38)	Minimum gain selecta a) 1 dBm	ıble for Equalizer am b) 2 dB	plifier is c) 4 dBm		()
39)	Interconnection between a) Transposition	een section control a b) Patching	nd Dy. Control is ca c) Crossing	lled d) None	()
40)	Separate equipment f a) Impulse system	or radio patching is i	not needed in c) Both a & b		()
41)	The Radio patch conr a) 2	nection is taken from b) 1	Buffer in Indis		. ()
42)	There is no fac a) Patching	cility in a Control Tele b) Speech		way stations. d) None	()
43)	A universal control tel a) DTMF Encoder			control phone. d) None	()
44)	A portable EC telepho a) Guard	one is used by b) Loco Pilot			()
45)	A 2-wire 12-way telep a) 5	hone consists of one b) 10		slave phones. d) 15	()
46)	Electronic LC gate ph	one has one master b) 4	and sl c) 6	ave phones. d) 8	()
47)	Master phone of Electa) 3 V	tronic LC gate syste b) 12V	-	_ DC supply. d) 48V	()

48)	IWCCE can replace a	all telep	hones used at a way	station.	()
	a) Control	b) Auto	c) LC gate	d) All		
49)	number of co				()
	a) 2	b) 4	c) 6	d) 8		
50)	number of con	trol telephones can	be connected to IWC	CE.	()
	a) 6	b) 24	c) 30	d) 12		
51)	In Indian Railway, Vo	ice data logger is pro	ovided in		()
	a) Control Office	b) Test room	c) Way stations	d) All		
52)	Minimum no. of spee	ch channels recorde	d by one voice logge	r unit is	_()
	a) 2	b) 3	c) 4	d) 6		
53)	SCADA system is op	erating through	control o	circuit.	()
	a) Section	b) Traction Power	c) Traction Loco	d) Remote		
54)	Auto dialing system is	s used in emergenci	es for providing	Phone f	acility	
	at track side.				()
	a) Control	b) Auto	c) BSNL	d) All		
55)	sound	d is the result of an e	earth fault on overhea	ad circuits.	()
	a) Whistling	b) Hauling	c) Crackling	d) Noise		
56)	On UG cable circuit to	ransmission loss tes	t periodicity is		()
	a) Weekly	b) Monthly	c) Bi Monthly	d) Half yearly	1	
57)	Value of Psophometr	ic noise level should	be below		()
	a) 5mV	b) 10mV	c) 2mV	d) 8mV		
58)	If there is no Trans from	om controller one of	the likely cause can	be	()
	a) Amplifier failure		b) Power supply fail			
	c) Input from Mic not	available	d) Any one of the al	oove		
59)	If there no ringing at a	-	-		()
	a) Faulty DTMF deco		b) Wrong code setti	J		
	c) Rx amplifier failure		d) Any one of the al			
60)		n both way communi	cation loss with the c		()
	a) Equipment failurec) Cable failure		b) DC power supplyd) Any one of the al			
0.4)	•		, -			
61)	There is no communi be .	cation beyond an int	ermediate VF repeat	er. The cause	may ′	١
	a) Repeater amplifier	· failure	b) Repeater power	supply failure	(,
	c) Cable failure	.a.ia. c	d) Any one of the al			
62)	Computer connectivit	ty to the Voice loage	, -		()
/	a) Ethernet	b) serial	c) USB	d) Any one	`	,

63)	a) 12V	b) 24V	c) 36V	er is d) 48V	()
64)	POH (Phone off hook VOX mode is used fo a) POH & VOX c) ON HOOK & VOX	•	=	X	()
65)	The Voice logger use capacity. a) 2 GB	d in control commun b) 16 GB	ication has a built in c) 40 GB	hard disc of _ d) 80 0	(GB	-
66)	Recordings are saved simultaneously. a) PC	l automatically in HD	DD of logger as well a	as in the HDD o	of ()
67)	connectors are use a) RJ-11	ed to connect contro b) RJ-45	l voice channels to tl c) Both a & b	ne Voice logge d) None	er()
68)	The Train manageme to the various railway a) On Line		On Line' information c) Both a & b	of train mover d) None	nents ()
69)	have been insta track lay out, status o a) Display Boards		•)
70)	Video display umovements in his jurisa) Online		eter in optimum planr c) Both a & b	ning of train d) None	()
•	Train indication board work ona) Off line	· ·	ts and Audio announ ng display and annou c) Real time		,)
72)	The Tx and Rx freque and Control centre is a) 2.4 GHz	<u> </u>	train communication c) 338-355 MHz		is ()
73)	Mobile communication travelling public during a) TMS		•	ell as to inform	,)
74)	Significant impedance way station equipmer a) degrades		•	he connecting d) none)
75)	Gateways shall be us a) Railway Telephone c) Analog control tele	exchanges	CCS with and b) emergency comr d) All	nunication circ	(uit)

76) In \	VOIP bas	sed TCCS	S, P	hone sha	II be prov	rided to w	ay side s	tation ma	sters	
		sers of co	ontrol circ						()
a) l	IP		b) Analo	g	c) Dig	ital	d) n	ione		
=		_	n and real	l time per	formance	monitori	ng of TC	CS shall b	oe	
	ne by cer	ntralized __			-\ C - "		-1\ N	lana	()
,	Control		b) NMS		c) Ser		,	lone		
•			server sha	•	•				_ `)
,	False Ide	•		g passwo		,	g User na		d) No	ne
=			itionally a	_	echnolog	y, future	improven	nent in the	e ′	١
=	voip	i aiso bei	nefit the T b) IVRS		c) NM	IS	d) N	lone	()
,		al require	ed for DTI		,		۵,۱	10110	1	١
,	. ab leve	er require	b) -10 d		c) + 2		d) +	· 10 dB	()
/			,		-, –		/			
				NOWE	D.O. 14	E > /				
					RS K			· -		
1	2	3	4	5	6	7	8	9	10	
С	b	а	b	а	С	b	С	d	а	
11	12	13	14	15	16	17	18	19	20	
С	b	С	а	С	d	b	С	b	а	
21	22	23	24	25	26	27	28	29	30	
С	d	С	d	b	d	С	d	а	b	
31	32	33	34	35	36	37	38	39	40	
С	а	b	d	b	d	d	а	b	b	
41	42	43	44	45	46	47	48	49	50	
а	С	b	С	b	С	b	а	d	С	
51	52	53	54	55	56	57	58	59	60	
b	С	d	d	С	b	С	d	d	d	
61	62	63	64	65	66	67	68	69	70	
d	а	а	а	С	а	а	а	а	а	
71	72	73	74	75	76	77	78	79	80	

С

а

а

b

d

а

b

а

а

а

ST-50: OPTICAL FIBER COMMUNICATION, SDH & EQUIPMENT

1)	Light is composed of a) Electron	elementary particle (b) Proton	called c) pho	ton	d) neutro	(n)
2)	Primary properties of a) Wavelength	light are b) Polarization	c) freq	uency	d) all	()
3)	Speed of light in free a) $E = mc^2$	space defined by Eilb) E = M/C ²		-	d)M = E/0	(C ²)
4)	Speed of light in vacca) Refractive index	• •	_			•)
5)	Optical fibers accept a) Bipolar	b) unipolar		y polarity	d) None	()
6)	The main drawback of a) tapping is difficult	•			m is that __ d) High E	- `)
7)	Transmission loss of a) 2.5	optical fiber at a wav b) 0.25	/elength c) 0.02		is dB/ d) 25	Km ()
8)	Transmission loss of a) 0.35	optical fiber at a wav b) 3.5	elength c) 2.5	of 1310 nm	is dB/ d) 0.25	Km. ()
9)	In step index fiber a) refractive index rer b) decreases to some c) remains constant to d) both a & b	e value at the core cl	adding			()
10)	In the refractive cladding interface and a) Graded index fiber	d then remains cons	tant thro	oughout the c	ladding	()
l1)	The number of modes aperture, Core diame a) Wavelength of light	ter and				cal () None)
12)	Mode-Field Diameter a) diameter of the cor c) diameter of the cla	e	,	of the power)
13)	Refractive index of glant a) 1.5	ass is b) 1.33	c) 1.0		d) 3.5	()
14)	Mode is an available direction of light propa a) a plane transverse c) Both transverse an	agation		tic field in b) a plane lo d) none of a,	ngitudinal	o the ()

15)	A mode for which the compared to compone a) Circularly polarized c) TEM mode	ents perpendicular to	to that direction is called b) linearly polarized mode d) TM mode)
16)	Multimode fiber is bes a) Longer		_ transmission distar c) medium	nces d) very Long	()
17)	The disparity between a fiber while traveling a) Dispersion		known as	the output of d) Mixing	()
18)	In graded index fiber of in the of a) Cladding	the fiber		refractive inde d) Tube	x ()
19)	Cut-off wavelength of a) 1310	a SM fiber is greate b) 1260	r than mm c) 1450	n. d) 1550	()
20)	Mode field diameter o a) 9.3	f SM fibre is b) 12	micrometers.	d) 6	()
21)	The Numerical apertu a) Light gathering cap c) Light rejecting capa	acity	b) Light emitting cap d) Light amplificatio	•	()
22)	The numerical apertura) 0.10 to 0.17			d) 0.95 to 1.2	()
23)	Scattering and absorp a) Total internal reflec c) gain to the signal		ause b) attenuation d) Dispersion		()
24)	Impurities and irregula a) Scattering b) at	arities in the physical osorption c) total		cal fiber cause d) Four wave	=)
25)	Rayleigh's scattering i a) Water vapors	s due to pr b) metal ions		atrix. d) H+ ions	()
26)	Scattering limits the use a) 1310	se of wavelengths b b) 1550	elow mm in option c) 800	cal fiber. d) 650	()
27)	The hydroxyl ions and of ligh	l impurities present i t signals.	n the silica are the re	easons for	()
	a) Bending	b) scattering	c) absorption	d) Dispersion		
28)	An attenuation of 3dB a) 10	corresponds to 9	% reduction in origina c) 50	al power. d) 3	()
29)	Inter modal dispersion a) only in SM fibers c) Both SM & MM fibe		b) only in MM fibers d) cannot be said		()

30)	Polarization mode dispersion (PMD) is siga) above 1Gbpsc) above 2Mbps but less than 1Gbps	b) below 1Gbps	()
31)	ITU-T recommendation G.652 describes t a) dispersion-shifted fiber c) Non-zero dispersion-shifted fiber	he properties of b) Non dispersion-shifted fiber d) None of the above a,b & c	()
32)	ITU-T recommendation G.653 describes t a) dispersion-shifted fiber c) Non-zero dispersion-shifted fiber	b) Non dispersion-shifted fiber	()
33)	ITU-T recommendation G.655 describes t a) dispersion-shifted fiber c) Non-zero dispersion-shifted fiber	he properties of b) Non dispersion-shifted fiber d) None of the above a,b & c	()
34)	fibers have high dispersion a) G.652 b) G653	at 1550 nm. c) G655 d) None	()
35)	fiber the zero-dispersion point is shifted a) G.652 b) G653	d to the wavelength region 1550nm c) G655 d) None	ı()
36)	The fiber is very model of the fiber of the fib	652	()
37)	LSZH cables are preferred for indoor appl a) Less toxic and slower to ignite c) Both a & b	ications because b) They are halogen free d) None of a & b	()
38)	The Tensile strength is of the order of a) 4400 to 6000 kg per sq.cm c) 440000 to 600000 kg per sq.cm	b) 44000 to 60000 kg per sq.cm d) 440000 to 600000 kg per sq.mn)
39)	The normal optic fiber cable drum length i a) 2 Km b) 3 Km	s c) 1 Km d) 4 Km	()
40)	12-fiber armoured optic fiber cable can be a) Underground as well as for aerial c) Only aerial	used for laying. b) Only Underground d) None	()
41)	The 24-fiber armoured optic fiber cable co a) 2 loose tubes c) 24 single loose tubes	ntains b) 3 loose tubes d) 6 loose tubes	()

42)	a) 5 b)		very meters on the c) 150	e cable route. d) 50	()
43)	After laying the optic fibe cable should be covered	with riddle earth.			e ()
44)	Pulling tension/force on t	the cable during O			()
45)	During OFC cable laying a) 100mtrs/minute	naximum speed	b) 10mtrs/minute	d) 2670Kg t be	()
46)	c) 20mtrs/minute In order prevent theft of 0		d) 200 mtrs/minute	e should be fill	led
40)	up by a) Petroleum Jelly c) bitumen compound	·	b) cadmium compou		()
47)	The bitumen compound a) 20 b)	•	to a height of appro c) 60	oximate _ mm. d) 10	()
48)	Brick protection to be pro		nch at c) Station/yards	d) Bridges	()
49)	The loss offered by a me a) 0005 b)		of optic fibers is less c) 0.5	than dB. d) 1.5	()
50)	The loss offered by a fus a) 0.005 b)		fibers shall not exce c) 0.2	eed d) 1.5	()
51)	During installation a mini	imum of me	eter of optic fiber cab	le on each en	d
	is coiled in the jointing pit a) 10 b)		c) 5	d) 20	()
52)	Ferules of optic fiber con a) metal or ceramic or pla c) only ceramic	astic	of materials b) only metal d) only plastic	5.	()
53)	Biconic connectors are g	generally used in _	app	ications in opti	ic
	fiber communication. a) LAN b)	WAN	c) SAN	d) MAN	()
54)	Cleaving of the fibre is per a) 90° b) 60°	erformed to obtain c) 40°	on end face of d) 30°	the fiber	()
55)	Generally Light sources a) 850, 1200, 1460nm c) 850, 1410, 1350nm		nit light at wave b) 850, 1310, 1550r d) 800, 1200, 1460r	m	()

56)	Generally Light sources are provided to e a) 0dBM or -3dBm c) 0dBM or -7dBm	mit light at power levels b) 0dBM or -6dBm d) 3dBM or -7dBm	()
57)	LSPM(Light source Power meter) method a) Power and distance c) Distance only	is superior to OTDR for Measuring b) Power only d) Optical return Loss only	g ()
58)	The Dead zone in OTDR is caused bya) Fresnel reflection and the amplifier recovery time	overy time b) Fresnel reflection d) RBS	(only)
59)	On OTDR trace horizontal axis represents a) Launch Power b) Distance	s c) Return Power d) Time	()
60)	On OTDR trace Vertical axis represents_ a) Launch Power b) Distance	c) Return Power d) Time	()
61)	Excessive pulse width in OTDR causes a) Decrease in Dead zone length c) Dead zone length is un effected	b) Increase in Dead zone length d) Ghost refection occurs	()
62)	Reduction in acquisition time in OTDR ca a) Smooth trace is obtained c) Dead zone length is extended	uses b) Noisy trace is obtained d) Ghost refection occurs	()
63)	For best results of measurements with OTa) Knowledge of Cable plant is required c) Auto- mode of settings should not be u	b) LSA averaging method to	(b be us) ed
64)	OTDR trace to be obtained and analysed statement a) Before laying at 1310nm, and after layi b) Before laying at 1550nm, and after layi c) At both wave lengths before as well as d) At both wave lengths Before laying only	ng at 1550nm ng at 1310nm after laying	rrect ()
65)	Light emission can occur through a) Spontaneous emission c) Both of a & b	b) Stimulated emission d) None of a & b	()
66)	The main Requirements of Optical source a) Spectral width & Directivity c) Linearity and Reliability	es include b) Output Power & Output wave l d) All of the above a, b, & c	(ength)
67)	The quantum efficiency of an optical sour a) It is the ratio of no. of photons generate b) It is the ratio of no. of carriers crossing c) It is the ratio of no. of carriers generate d) It is the product of no. of photon generate	ed & no of carriers crossing the jun the junction & no. of photons gene d & no. of photons crossing the jur	erated nction) 1

68)		y is always < than the internal quantum efficiency always < than the external quantum efficiency ds on other factors	
69)	Optical sources include a) LEDs only b) LASER only	c) LASERs, LEDs and APDs d) Both of a & b	
70)	Principle involved in optical detect a) Seabeck effect c) Faraday effect	tor operation () b) Photo electric effect d) Scotky effect	
71)	b) fraction of photons which contri	ribute to the external photocurrent	
72)	optical signal. b) It is the ratio of electron genera	tector is defined as () erated in a photo detector in the absence of any ation rate and photon incidence rate on rate and electron incidence rate	
73)	Photo detectors include a) PIN diode and APDs c) APDs, PIN diodes, & MSMs	() b) APDss and MSMs d) None of the above a,b & c	
74)	b) A measure of how much output c) A measure of how much output	defined as () t light is obtained for each watt of input light t current is obtained for each Amp of input current c current is obtained for each watt of input light t light is obtained for each amp of input current	
75)	The bandwidth is limited in optical relaxation frequency ofa) Laser diode b) Photo de	transmitter with internal modulator due to () tector c) both a & b d) none	
76)		ode in optical transmitter using external level of radiated by the laser diode. () c) Current d) Resistance	
77)		n optic fiber communication have made it possible hout optical-electrical-optical conversion. () e c) Time period d) None	

-		n optical fiber links a	are specific t	to bit rate	and modula	tion	,
	nat. Amplifiers	b) Regenerators	c) optical r	nux	d) none	()
79) The	e optical emp	oloyed in optic fiber	communicat	ion are inc	dependent o	f bit rate	Э
	d modulation forma					()
a) a	amplifiers	b) Regenerators	c) optical r	nux	d) none		
•	e system up grada Amplifiers	tion in optical fiber li b) regenerators	nks does no c) optical r	-	change in d) none	()
, .	stem up gradation egenerators	requires replaceme b) Amplifiers	nt of regene c) optical r		ptical fiber li d) none	inks()
82) ED	FAs are typically c	apable of providing	a gain of ab	out d	B to the inpเ	ut	
•	ical signals. 30 dB	b) 20 dB	c) 10 dB		d) 40 dB	()
83) Lin	k power budget ar	alysis is to be perfo	rmed to ens	ure	_	()
•	Sufficient system c Minimum power av	peration margin ailable at the receiv	,	•	tional feasib bove a,b & o	•	
84) The	e reasons for keep	ing system margin i	s/are			()
•		and subsequent loss	,	Aging effect		-	
,	Environmental deg		,		bove a,b & o	; ,	
a) t		considered in PBA ptic fiber system is one of the constant of	`	•	,	(nimum)
c) I	n existing system,	power under minim how much we could and still meet the mi	d lengthen th	ne fiber wi	•	•	
d) <i>A</i>	All of the above a,t	0 & C					
,	optical Tx is emitti mWatt	ng power at 0dBm v b) 1 micro Watt	•	ivalent to_ Watt	d) 0 \	(Vatt)
87) A L	oss of 10 dB impli	es	ŕ		,	()
•	0% of power has		b) 90% of p			`	•
c) 1	0 watts power los	İ	d) None of	the above	e a, b & c		
•	oss of 3 dB implies		1) 000/ 5			()
•	50% of power has 0% watts power lo		b) 90% of pod (a) 3% of pod (b) 3% of pod (c) and (c)				
,	·	system is defined as				()
a) (b) (tr)SYSTEM = [{t tr)SYSTEM = [{t	r (Tx)} ² + {tr (fiber)} r (Tx)} ^{0.5} + {tr (fiber) r (Tx)} ^{1.2} + {tr (fiber)	² + {tr (Rx)} ² } ^{0.5} + {tr (Rx	$(2)^{0.5}$] ²		(,

90)	In Rise time budget a	inalysis factors to be	considered are		()
	a) Rise time of the fibc) Rise time of the re	•	b) Rise time of the d) All of the above a			
91)	In rise time budget ar using a) Suitable measurer				()
	c) Can be assumed r	•	d) All of the above			
92)	 2) In Rise time budget analysis Rise time of fiber can be found using a) Suitable measurement technique b) DATA Sheet of OEM c) Can be assumed reasonably d) From dispersion coefficient & 					
93)	OTDR is used for a) Attenuation loss made) Splice loss		b) Fiber break ident		()
94)	Wavelength used in sa) 850 nm	ingle mode fiber for b) 1310 nm		ation is d) Both c & d	()
95)	Optical power meter i a) Power loss			d) None	()
96)	Permissible splice los a) < 0.1 dB	•	ng is c) < 1.0 dB	d) < 2.0 dB	()
97)	Type of OFC cable us a) 12 F	sed in Indian railways b) 24 F	s is c) 48 F	d) 96 F	()
98)	OFC cable drum size a) 1 KM b) 2 K			M	()
99)	Refractive index of glaa) 1.0	ass is b) 1.5	c) 2.0	d) 2.5	()
100)	Macro bending loss s a) 20 D	hould not be less that b) 30 D	an diameter of c	cable d) 50 D	()
101)	In SDH system the m a) Bit interleaving	ultiplexing is done by b) Byte interlea	•	s ha&b	(d) Nor) ne
102)	A single synchronous a) Add All PDH data r c) Add/Drop all PDH	rates	orms the function to b) Drop all PDH dat d) None		()
103)	Synchronous digital to a) From different veno c) Both a or b		ents can be inter ope b) From same vend d) None		()
104)	The container and pa a) Virtual container(V c) Pointer		frame together forme b) Tributary unit (TU d) Administrator Un	J)	()

	a) C12	rate of ITUT is mapp b) C11	c) C3	d) C4	()
106)	J1 byte of POH in ST				()
	a) Path trace	b) BER	c) Management	d) EOW		
107)	In one TUG-3 how ma	any No. of TU-12 wil b) 3	l exists? c) 21	d) 63	()
108)	The data rate of STM a) 622.080 Mbits/s		c) 155 52 bits/s	d) 2 048 Mbr	()
109)	The Administrative ur	nit is the combination	of		()
	a) Pointer+ POH	b) VC-4 + POH	c) POH+C-4	a) VC-4+POI	NIEK	
110)	In an STM-1 frame, that a) 2430	ne size of payload ar b) 2340	ea will be of by c) 2043		()
111)	An STM -1 frame is a a) 9 X 260				()
112)	Performance analysis a) B1, B2, B3				()
113)	When VC-4 is slower a) Positive justificatio	· · · · · ·			-)
444						
114)	bytes a	are used as Data cor	nmunication channe	l for maintenaı	nce	
114)	purpose between mu a) K1,K2	ltiplexers.			nce ()
ŕ	purpose between mu a) K1,K2	ltiplexers. b) F1,F2	c) D4-D12	d) A1-A3	()
ŕ	purpose between mu	ltiplexers. b) F1,F2 e used for Automati	c) D4-D12	d) A1-A3	()
ŕ	purpose between mu a) K1,K2 bytes ar & remote alarm comm	ltiplexers. b) F1,F2 e used for Automati	c) D4-D12 c Protective Switchir	d) A1-A3 ng (APS) comr	()
115)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is	Itiplexers. b) F1,F2 e used for Automatimand b) F1, F2 the combination of	c) D4-D12 c Protective Switchir c) D4-D12	d) A1-A3 ng (APS) comr d) A1-A3	()
115) 116)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH	Itiplexers. b) F1,F2 re used for Automatinand b) F1, F2 re the combination of b) RSOH+AU-4	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4	d) A1-A3 ng (APS) comr d) A1-A3 d) None	(
115)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH	Itiplexers. b) F1,F2 e used for Automatimand b) F1, F2 the combination of	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4	d) A1-A3 ng (APS) comr d) A1-A3 d) None	()))
115) 116) 117)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH defines	Itiplexers. b) F1,F2 re used for Automation and b) F1, F2 the combination of b) RSOH+AU-4 the locations of the Tb) TUG-2 TM –1 frame genera	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4 rU3s with in the VC4 c) TU12 tes	d) A1-A3 ng (APS) comr d) A1-A3 d) None d) TU-11	(mand (((
115) 116) 117)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH defines a) TUG-3	Itiplexers. b) F1,F2 re used for Automation and b) F1, F2 the combination of b) RSOH+AU-4 the locations of the Tb) TUG-2 TM –1 frame genera	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4 TU3s with in the VC4 c) TU12	d) A1-A3 ng (APS) comr d) A1-A3 d) None d) TU-11	(mand ((()
115) 116) 117) 118)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH defines a) TUG-3 A row of VC4 in an S	Itiplexers. b) F1,F2 re used for Automation and b) F1, F2 re the combination of b) RSOH+AU-4 the locations of the Tb) TUG-2 TM –1 frame genera b) 86 addresses	c) D4-D12 c Protective Switchir c) D4-D12 c) MSOH+AU-4 TU3s with in the VC4 c) TU12 tes c) 85 addresses	d) A1-A3 ng (APS) comr d) A1-A3 d) None d) TU-11	mand ((((ses)
115) 116) 117) 118)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH defines a) TUG-3 A row of VC4 in an S a) 87 addresses The number of bytes a) 3 bytes To generate a pointer	Itiplexers. b) F1,F2 re used for Automation and b) F1, F2 the combination of b) RSOH+AU-4 the locations of the Tb) TUG-2 TM -1 frame generate b) 86 addresses to generate an addresses r address for negative	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4 fU3s with in the VC4 c) TU12 tes c) 85 addresses ess in VC4 frames _ c) 2 bytes e justification are	d) A1-A3 ng (APS) comr d) A1-A3 d) None d) TU-11 d) 84 address d) 1 bytes	(mand ()
115) 116) 117) 118) 119)	purpose between mu a) K1,K2 bytes ar & remote alarm comm a) K1, K2 Section Over Head is a) RSOH+MSOH defines a) TUG-3 A row of VC4 in an S a) 87 addresses The number of bytes a) 3 bytes	Itiplexers. b) F1,F2 re used for Automation and b) F1, F2 the combination of b) RSOH+AU-4 the locations of the Tb) TUG-2 TM -1 frame generate b) 86 addresses to generate an addresses to generate an addresses r address for negatives b) H3 & H4 bytes	c) D4-D12 c Protective Switchin c) D4-D12 c) MSOH+AU-4 fU3s with in the VC4 c) TU12 tes c) 85 addresses ess in VC4 frames _ c) 2 bytes e justification are c) H1 & H3 bytes	d) A1-A3 ng (APS) comr d) A1-A3 d) None d) TU-11 d) 84 address d) 1 bytes	(mand ()

122)	The V3 byte of TU12 of 500 a) Negative justification	μs is used for b) Positive ju		c) Both A or B	(d) No) one
123)	The end nodes of bus topole	ogy are called	l	,	()
404)	,	b) Add /drop	nodes	c) Both A or B	d) No	one ,
124)	A ring network consists of _ a) ADM nodes	b) Terminal r	 nodes	c) Both A or B	(d) No) one
125)	In star network if the HUB fa a) No traffic can flow in the c) Both A or B		iffic can flows	through the altern	(ative linl) k
126)	The nodes of meshed network a) Cross-connected equipmed c) Both A or B			 s-connected equip	(ment)
127)	If one of the inter node links a) The traffic is interrupted c) Both A or B	of a APS net		is not interrupted	()
128)	The multiplexing section of a) 16 bits of MSOH c) 32 bits of MSOH	a SDH networ	k is protected b) 8 bits of M d) None		()
129)	In case of 1+1 configuration a) The stand by route is idle b) The stand by route and n c) The stand by route or ma d) None	when main is nain route are	s working cond in working co	ndition	()
130)	Bi-directional SDH ring suppa) Only section protection c) Both A & B	oorts	b) Both the p	eath and section	()
131)	F – interface on ADM of SD a) Serial interface b) Pa		c) Both A o	r B d) None	()
132)	QECB port of SDH element a) Power supply module b		 e of SDH c) E	Both A & B d) No	(ne)
133)	The Ethernet port of a network a) QB3 b) QB		f SDH is c) QECC	 d) None	()
134)	Frequent adjustment of poir a) Low frequency jitter	• -	 uency jitter c)	Both A & B d) N	(Jone)
135)	The SSU should be provide a) less than 20 consecutive b) More than 20 consecutive c) More than 40 consecutive d) less than 40 consecutive	network eleme network eler network eler	ments nents		()

136)	As per the ITU-T's sta a) Should not be more b) Should be more that c) Should be more that d) Should not be more	e than 10 in a trail to an 10 in a trail to PR an 20 in a trail to PR	PRC C C		()
137)	To a PRC in a trail a) Maximum 60 NEs c) Maximum 80 NEs	can be connected	b) More than 60 NE d) More than 80 NE)
138)	In hold over mode the a) 24 hours b) Le	e system synchroniza ess than 24 hours	ation of SDH ring car c) 12 hours d)		_ `)
139)	The T0 clock is kept I b) In Holdover mode			_() a) In Lock	ced mod	le
140)	T1 clock is a reference a) STM-N	e clock of b) Any 2Mbps	 c) 64 kbps	d) No	(one)
141)	For traffic performance a) Are 5 slips per day b) Are 4 slips per day c) Are 3 slips per day d) Are 2 slips per day	in 24 hours for grea in 24 hours for grea in 24 hours for grea	ter than 98.9% ter than 98.9% ter than 98.9%	_	()
142)	ITUT's recommendat a) G.709	ion for SDH mux is _. b) G.708	c) G.707	d) G.703	()
143)	ITUT's recommendat a) G.957	ion for SDH optical ii b) G.958	nterfaces is c) G.952	d) G.951	()
144)	Jitter is thea) Short-term variatio	 n b) Long-term varia	ation c) Both A & B	d) None	()
145)	For testing of transpo a) The BER and map b) The timing offset a c) Both A& B d) None	rt capability tests ping /de-mapping te	sts are conducted	ted	()
146)	Clock synchronization a) Verifying the line fr c) Sync status byte		y b) Pointer activity d) All the above		()
147)	VC-4 is formed by mua) 3	ultiplexing TUG-	3's c) 5	d) 6	()
148)	The input to containe	er C4 is	,	ŕ	()
149)	a) E1VC4 is generated bya) C1	b) E2 adding the POH to _ b) C2	c) E3 _ c) C3	d) E4 d) C4	()

150)	E1 traffic is mapped a) C-12	into container b) C-2	c) C-3	d) C-4	()
151)	V Mux – 30A is equip			·	()
	a) Voice only	b) Data only	c) Both voice & Dat	a d) N	one	
152)	In V mux – 30A Slot a) Auxiliary (AUX) ca b) PCM interface (PC c) Signalling Multiple d) General maintena	rd CM I/F) card xing (SMX) card			()
153)	In V mux – 30A Slot				()
	a) PCM interface (PCc) Conference card	CM I/F) card	b) Signalling Multipd) Power Supply ca		card	
154)	In V mux – 30A Slot	9 is allotted to			()
	a) PCM interface (PCc) Conference card	CM I/F) card	b) Signalling Multip d) Auxiliary (AUX) o	- , ,	card	
155)	V mux – 30A has	numb	pers of routing tables		()
	a) Two	b) Three	c) Four	d) Six		
156)	In V mux – 30A, a co		rovide up to	simu	ıltaneou	S
	four party conference a) 12	es b) 15	c) 8	d) 10	()
157)	•	,	•	,	. /	`
157)	In V mux – 30A, eacl a) One		c) Three	d) Four	· ()
158)	In V mux – 30A Fran	-			()
	a) Trunk alarm	b) AIS alarm	c) BER alarm	d) none		
159)	In V mux – 30A a) Local alarm	=		d) none	()
160)	V mux – 30A is a	system			()
	a) Microprocessor	b) Microcontroller	c) Miniprocessor	d) None		
161)	The sub-rack of WEE	BFIL Mux has altoget	her	_ slots for ho	using	
	the various modules				()
	a) 10	b) 12	c) 13	d) 14.		
162)	In WEBFIL mux, Slot slots	:-12 and slot-13 have	e equal and parallel a	ccess to time) /	١
	a) 1 & 16	b) 15 & 16	c) 30 & 31	d) None	(,
163)	In WEBFIL mux, the	no of cross connect	tables to be down loa	aded to take	care	
-)	of various conditions				()
	a) 4	b) 2	c) 5	d) 6		

164)	In WEBFIL mux, Slot 3 is allotted to)	()
	a) Power Supply cardc) Tributary card	b) Network Interface Moduled) Voice module		
165)	In WEBFIL mux , Slot 10 is allotted ta) Power supply card c) High Speed Data Module	,	()
166)	In WEBFIL mux, the NMS can access a) 9pin D- shell connector only b) Both RJ11 connector & 9pin D- sh c) RJ 11 connector only d) RJ 45 connector only		()
167)	WEBFIL Mux uses cross-connec	t table when tributary A is having a m	ajor	
	•	o) Modified Remote A d) None	()
168)	In WEBFIL mux, the station ID is set a) Tributary module b) Moth		(None)
169)	In WEBFIL mux, internal/extracted ca) Tributary module b) Moth	J	(None)
170)	•	etting is done in/on o) Tributary module d) Data module	()
171)	In WEBFIL Mux, setting of D/I or End a) Tributary module b) NIM card		()
172)	In WEBFIL mux, the output voltages a) +5V, +/- 12V, +/- 80V c) +5V, +/-10V, + 80V	of power supply card are b) +/-5V, +/-10V, + 80V d) None	()
173)	In WEBFIL Mux, is a system a) AIS b) Configuration error		()
174)	In WEBFIL Mux, during the ope under scan mode a) Normal b) Abnormal	eration of the network the NMS is kep c) Emergency d) None	ot ()
175)	In WEBFIL mux, is a remote relation a) AIS b) BER	ated alarm c) RMA d) None	()
176)	,	data rates o) 2Mb, 8Mb & 34Mb d) 2Mb only	()

177)	a) Multiplexer b) Optical Line c) Both Multipl d) None of the	e Terminal Eq lexer & Optica	uipment	nal Equipment		()
178)	In Nokia syste a) DM2			gured as c) DF2	d) None	()
179)	In Nokia syste a) DM2	em 2 Mb brand b) DB		realized using c) DF2	card d) None	()
180)	In Nokia syste a) Branching o c) Impedance	of channels	ng can be co	nfigured in DM b) Time slot d) All of the		ninal()
181)	In Nokia syste a) 4	em, the data ir b) 6	iterface card c) 8	supports d) 10	channels	()
182)	In Nokia syste a) 4	em, the E&M/\ b) 6	/F card suppo c) 8	orts d) 10	channels	()
183)	In Nokia syste a) 4	em each FXS o b) 6	card has c) 2	_ports d) 8.		()
184)	The Multiplexi DM2 and DB2 a) 2		NOKIA is cor c) 5	nfigured into tw	o types of configura	itions ()
185)	In Nokia syste a) 2	em there are to b) 4	wo types of lo	oop backs in D d) 3.	M2	()
186)	In Nokia syste a) 4		/I card has c) 2	ports d) 6.		()
187)					equipment d) Drop/inse	(ert Mux) ×
188)	2/34 Mb Mux	multiplexes _	numb	ers of Plesioch	ronous 2 Mb/s bit st	ream	
	into one 34 M a) 4		o) 12	d) 16		()
189)	In 2/34 MUX , a) cyclic bit int				c) both a & b	(d) No) one
190)	In 2/34 MUX, a) Negative			is employed c) Positive	d) None	()
191)	In 2/34 MUX, a) 2Mbps tribu c) 2 Mbps inpu	TRF Alarm pe utary receive o	ertains to Abs clock	b) 34 Mbps i		(k)

192)	In 2/34 MUX, In a) 2Mbps tribu	•		o Absei	_	b) 34 Mbp	 s input	()
	c) 2 Mbps inpu	ıt				d) 34Mbp	s tributary r	eceive	clock
193)	In 2/34 MUX, t a) +5V,-5V c) +5V, -5V an	-	ages o	b) +15	V, +5V	card are 15V and -	15 V	()
194)	VMUX-0100 pi a) 30	rovides b) 40			Data po d) 60.	orts in the	19" sub-rac	k ()
195)	In VMUX-0100 a) 18		of c) 12		nces ca d) 08.	an be con	figured as 4	-party()
196)	VMX -0100 sho	elf has b) 14			ots d) 15			()
197)	TME card of V a) 1	MMX-0100 ca b) 2	an be lo		n the sl d) Any			()
198)	User Interface a) Slot 1 to Slo c) Slot 5 to Slo	ot4	JX-100		5 to SI			. ()
199)	Redundant pov a) 1	wer supply ca b) 1 and 2	rd can	be insta c) 2		slot no d) 3.	_ of VMUX	-0100 ()
200)	In case of any card is used to a) TME	_			ams ca		traffic	()
201)	To set the ID o on a) TME card), an ei C card			P switch h	-	() d
202)	The ID of the e the address of a) NMS		me of V	/MUX-0		ope	ration and f d) Both	()
203)	NMS Ethernet a) LPC		connec ther bo			d on c) TME		(I) DAC)
204)	In VMUX-0100 a) PCM-1 rece c) PCM-1 loss	ives all 1s (A	-		b) PCN	Л-1 frame Л-1 multi f		()
205)	In VMUX-0100 a) PCM-1 rece c) PCM-1 loss	ives all 1s (A	•		b) PCN	Л-1 frame Л-1 multi f	sync loss rame sync l	oss)

206) In VMUX-0100, P1 La) PCM-1 receives ac) PCM-1 loss of sign	b) PCM-1 fr	rame sync loss rror rate >E 10 ⁻³	()	
207) In VMUX-0100, the c a) +5V,-5V c) +5V, +12V and -12		b) +12V, +5		()
208) In VMUX-0100, FXO a) Exchange	card isi b) Subscriber	nterface c) Hotline	d) Data	() I
209) In VMUX-0100 the d a) HOT LINE	ata acquisition card (b) Voltage Monitori	•	r d) Subscriber	() line
210) In VMUX-0100 of interfaces a) FXS	card is required for Solon b) FXO	ubscriber, Loop out c) E & M	going and Hot li d) NIM	ne ()
211) In PD- Mux, a controla) Semi conferencec) Conference mode	mode	in b) Point to point m d) None	ode	()
212) In Railways the PD-Na) Mesh topology		c) Star topology	d) Linear topo	() logy
213) Use of LPC card & 2 used in a) Webfil Mux c) Puncom V-0100 m		n for all time slot pro b) Nokia Mux d) Puncom V-Mux	(is ()
214) Ring protection (usin a) Puncom VMUX-0		= -	-	
215) PD-mux requires a) E-1	level of input b) E-3	c) E-2	d) E-4	()
216) In 1 E1number a) 15	of voice/data channe b) 20	els can be configure c) 30	ed d) 32.	()
217) In 1 E1 supports a) 15	number of time s b) 20	slots c) 30	d) 32.	()
218) Time slot TS-0 is res	served for b) Signalling	c) Mapping	d) Monitoring	()
219) Time slot TS-16 is real a) Synchronisation		c) Mapping	d) Monitoring	()
220) LPC card is available a) Webfil mux	e inmux b) PUNCOM mux	c) NOKIA m	nux d) All	()

ANSWERS KEY

4	0	2	4	_		7	0	0	40
1	2	3	4	5	6		8	9	10
С	d	a	a	b	a	b	a	d	a
11	12	13	14	15	16	17	18	19	20
а	b	a	a	b	b	a	b	b	a
21	22	23	24	25	26	27	28	29	30
а	а	b	а	b	С	С	С	b	а
31	32	33	34	35	36	37	38	39	40
b	а	С	а	b	а	С	b	b	b
41	42	43	44	45	46	47	48	49	50
d	d	С	а	b	С	С	С	С	С
51	52	53	54	55	56	57	58	59	60
а	а	а	а	b	С	b	а	b	С
61	62	63	64	65	66	67	68	69	70
b	b	d	С	С	d	а	а	d	b
71	72	73	74	75	76	77	78	79	80
d	а	а	С	а	а	а	b	а	а
81	82	83	84	85	86	87	88	89	90
а	а	d	d	d	а	b	а	а	d
91	92	93	94	95	96	97	98	99	100
b	d	d	d	а	а	b	С	b	b
101	102	103	104	105	106	107	108	109	110
b	b	а	а	а	а	С	а	d	b
111	112	113	114	115	116	117	118	119	120
С	а	а	С	а	а	а	а	а	а
121	122	123	124	125	126	127	128	129	130
а	а	а	а	а	а	b	а	b	b
131	132	133	134	135	136	137	138	139	140
а	а	а	а	а	а	а	а	а	а
141	142	143	144	145	146	147	148	149	150
а	а	а	а	а	С	а	d	d	а
151	152	153	154	155	156	157	158	159	160
С	d	а	С	С	b	d	а	b	а
161	162	163	164	165	166	167	168	169	170
С	С	d	b	d	b	а	С	а	а
171	172	173	174	175	176	177	178	179	180
а	С	b	а	а	b	С	b	b	d
181	182	183	184	185	186	187	188	189	190
d	С	b	а	а	b	С	d	а	С
191	192	193	194	195	196	197	198	199	200
С	d	d	b	d	b	С	С	С	d
201	202	203	204	205	206	207	208	209	210
d	а	С	С	а	b	С	а	b	а
211	212	213	214	215	216	217	218	219	220
С	d	С	d	а	С	d	а	b	b
			_ ~					~	~

ST-51: AMPLIFIERS, OSCILLATOR & WAVE PROPOGATION

1)	How many type of a A. Two	amplifiers depending B. Three	g on the property of the C. Four	heir output D. Six	()
2)	Amplifiers income. A. Voltage Amplifier C. Current Amplifier	r	of the output voltage B. Power Amplifier D. All Of the Above		()
3)	Current amplifier tra A. Input Signal	ansforms only the cu B. Output Signal	·	the D. Output Ga	(ain)
4)	Which of the followi A. Class A	ng are power amplit B. Class B or AB		D. All	()
5)	Which type of power cycle? A. Class A	er amplifier is biased B. Class B or AB	·	than 180° of t D. Class D	the ()
6)	Which type of ampl	. , ,	tal) signals in its ope C. Class C	ration? D. Class D	()
7)	Which of the power A. Class A	amplifiers has the le	owest overall efficier C. Class C	icy? D. Class D	()
8)		primarily provide su w watts to tens of w B. Power	ufficient power to an oratts. C. Large-signal	output load to D. None	drive ()
9)	Audio Frequency A A. 15 Hz to 20 kHz C. 15 kHz to 20 MH		s are in the range is B. 20 Hz to 20 kHz D. 20 kHz to 20 MH		()
-	Intermediate frequen A. Radar	cies amplifiers in red B. Radio	ceivers are used in_ C. TV	 D. All	()
	Radio Frequency am A. Low Resistance, lo C. High Resistance, l	ow Gain	resistance , g B. Low Resistance D. High Resistance	, High Gain	()
•	Wideband amplifiers A. Level meter B. osc		_ repeater D. TN	//S Kit	()
-	Direct coupled or DC A. Low B. Hig	-	to amplify frequery Low D. All		()
•	In an LC transistor os A. LC tank circuit	scillator, the active on B. Biasing circuit		D. None	()

•	In an LC circuit, when A. Minimum	·	B. Maximum	· · · · · ·	()
	C. Half-way between					
	An oscillator produces A. Damped	s oscill B. Harmonics		D. None	()
17)	An oscillator employs	feedback			()
	A. Positive		B. Negative		`	,
	C. Neither positive no	r negative	D. Both positive an	d negative		
18)	Hartley oscillator is co	mmonly used in			()
•	A. Radio transmitters	<u> </u>		s D. Nor	` ne	,
	is a fixed fred				(١
-	A. Phase-shift oscillat	-	B. Hartely-oscillato	r	()
	C. Colpitt's oscillator	O	D. Crystal oscillato			
00)	·	.	-	•	,	,
•	In Colpitt's oscillator,		<u> </u>		()
	A. By magnetic induct		B. By a tickler coil			
	C. From the centre of		D. None			
•	An important limitation	n of a crystal oscilla			()
	A. Its low output		B. Its high Q			
	C. Less availability of	quartz crystalD. Its	high output			
22)	If the crystal frequenc	y changes with tem	perature, we say tha	at crystal has _		
	temperature coefficier	nt			()
	A. Positive	B. Zero	C. Negative	D. None		
23)	The crystal oscillator t	frequency is very st	able due to	_	()
	A. Rigidity	B. Vibrations	C. Low Impedance	D. High Impe	dance	
24)	How many phase shif	t oscillators are use	d in RC section	S	()
,	A. Two B. Thre				`	,
25)	In simplex communication	ation the Trans and	receive frequencies	are	()
,	•	B. Low	C. High	D. All	`	,
			· ·		1	`
,	Simplex communication A. Transmitter	•	•		()
		B. Receiver	C. Amplifier	D. All		
27)	In ground wave Propa	•			()
	A. 3 to 30 kHz B. 3 to	35 kHz	o 20 kHz D. 2 t	o 25 kHz		
28)	What is the functionin	g role of an antenna	a in receiving mode?		()
	A. Radiator	B. Converter	C. Sensor	D. Inverter		
29)	Ground wave propaga	ation Frequencies a	re transmitted up to		()
	A. 2 kHz	B. 8 MHz	C. 2MHz	D. 8 kHz		

30)		propa	gation tra	nsmit the	electroma	agnetic si	gnals are	directed	
-	vards sky							()
Α.	Ground w	ave	B. Sky wa	ave	C. Line	of sight	D. spa	ice wave	
31)	Pro	pagation	is used for	or long dis	stance co	mmunicat	ion.	()
Α.	Ground w	ave	B. Sky wa	ave	C. Line	of sight	D. spa	ice wave	
32) Dir	ectivity O	f Dipole A	ntenna fe	ed point i	mpedanc	e is		()
Α. :	30 Ohms		B. 25 Ohr	ms	C. 72 O	hms	D. 36	Ohms	
33) The	e oscillato	r convert	s					()
Α.	AC to AC		B.AC to D	C	C. DC to	o AC	D. DC	to AC	
34) Ho	w many ty	pe of aud	dio freque	ncy ampl	ifiers			()
Α.	One	B. Two	•	C. Fo	our	D. 1	Three		
35) Ho	w many ty	pe of Ra	dio freque	ency ampl	ifiers			()
Α.	One	B. Two	•	C. Fo	our	D. 1	hree		
36) Am	nplitude m	odulation	(AM): Us	ed in	_ frequen	cy Transr	mission	()
A.	Low	B. High	า	C. M	N	D. A	All		
37) Fre	equency n	nodulatior	า (FM): us	ed in	Tra	nsmissio	n.	()
Α. Υ	VHF	B. UHF	=	C. M	N	D. A	ΑII		
38) In t	transmitte	r conv	erts the a	audio sign	al into ele	ectrical sig	gnal	()
A.	Micropho	ne B. AF	Amplifier	C. Mo	odulator	D. N	None		
39) Gr	ound Plan	ie (GP) Ai	ntenna fe	ed point li	mpedance	e is		()
A. :	30 Ohms		B. 25 Ohr	ms	C. 72 O	hms	D. 36	Ohms	
40) Ya	gi Antenr	na feed po	oint Imped	dance is _				()
A. :	30 Ohms		B. 25 Ohr	ms	C. 72 O	hms	D. 36	Ohms	
04	00	00	T	NSWEF	T		- 00	00	40
01	02	03	04	05	06	07	08	09	10
В	Α	Α	D	С	D	A	В	В	D
11	12	13	14	15	16	17	18	19	20
Α	В	С	С	А	В	А	С	D	С
21	22	23	24	25	26	27	28	29	30
Α	А	D	В	A	Α	A	С	С	В
31	32	33	34	35	36	37	38	39	40
В	С	С	В	В	В	D	Α	D	В

ST-52: DIGITAL ELECTRONICS

1)	Some examples of d	evices or quantities	which are digital in t	heir behavior a	are	
,	·	·	· ·		()
	a) Atmospheric press	sure	b) Day & night tem	perature		
	c) Toggle switch & re	elay	d) None			
2)	The Octal system ha	s a base of			()
	a) 2	b) 4	c) 8	d) 16		
3)	Which number system	m has a base of 16			()
,	a) Decimal	b) Octal	c) Hexadecimal	d) None	•	,
4)	How many bits are re	equired to store one	BCD digit?		()
,	a) 1	b) 2	c) 3	d) 4	•	,
5)	A group of bits that c	an be accessed at a	a time in parallel by a	a central proce	ssing ur	nit is
,	called		, ,	•	()
	a) nibble	b) byte	c) word	d) bit	•	•
6)	A group of 8 bits is ca	alled as a			()
,	a) nibble	b) byte	c) word	d) bit	•	,
7)	A logic gate can have	e			()
,	a) only one input and		b) many inputs and	d only one outp	out	,
	c) many inputs and n	nany outputs	d) one or many inp	-		ut
8)	OR gate is one of the	9	gates.		()
,	a) universal gate		b) combinational g	ate	•	,
	c) basic gate		d) sequential gate			
9)	NOR gate is OR gate	e followed by			()
			c) NOT gate	d) None		
10)	Logic of EX-OR gate	is of	parity.		()
•	a) odd parity		c) no parity	d) none	•	•
11)	The logic gate which	inverts its input is	g	ate	()
•	a) NOR gate				•	•
12)	NAND is equivalent t	o a ga	ate		()
,	a) AND gate plus OF			NOR gate	•	,
	c) AND gate plus NC	T gate	d) AND gate plus /	AND gate		
13)	The complement of t	he sum is equal to t	he		()
	a) sum of the comple	ements	b) product of the c	omplements		
	c) complement of the	products	d) none of the abo	ve		
14)	The complement of t	he product is equal	to the		()
	a) complement of the			e complement	:S	
	c) product of the com	nplements	d) none			

15) Application of Decoder is ina) Microprocessorsc) multiplexers for selecting logic	() b) memory chips d) All
16) A Full Adder adds bits at a time b) 2 bits at a time	
a) Many input to one output c) One input to one output	digital device () b) One output to many output d) Many input to many output
18) The selection logic in multiplexer is provida) Clockb) Decoder	ded by a () c) Register d) None
19) A Flip Flop works on the principle ofa) Astabale multivibratorc) Bistable multivibrator	b) Monostable multivibrator d) None
20) The prohibited state in SR flip flop which (a) S=R=0 b) S=0, R=1	needs to be avoided is () c) S=1, R=0 d) S=1, R=1
21) T-flipflop finds its application in frequency by a) 2 b) 4 c) 2n-1	()
22) In a Delay (D) flip flop, a) Input follows input c) Output follows input	
23) T flip flop is mainly used for constructing a) Frequency dividers b) Registers	
24) Which one of the flip flops can be called a a) D Flip flop b) T Flip flop	as a Universal flip flop? () c) SR Flip flop d) JK Flip flop
25) A counter is made up of a) SR Flip flop b) D Flip flop c) T F	flip flops. () Flip flop d) T Flip flops or JK Flip flops
26) For constructing down counters trigger a) +ve edged b) -ve edged c	gered flip flops are used. ()) Both +ve edged & -ve edged d) None
27) Among the following sequential logic circuldesigning of a sequence generator?a) Shift registersb) Counters	uits, which circuits are adopted for the () c) Both a & b d) None
28) Registers are constructed using a) D Flip-flops b) T Flip-flops	only. () c) JK Flip Flops d) SR Flip-flops
	ively b) A single input and many output d) None

30)	One of the common to a) EEPROM	ype of RAM is b) Mask ROM	c) DRAM	d) DDRAM	()
31)	Actually RAM should a) Read/Write c) Read/Write & Vola		memo b) Volatile m d) Nonvolatil	-	()
32)	Main disadvantage of a) It takes longer time c) Requires ultraviole	for programming	b) It can be e	erased electric	(cally)
33)	Among all types of mag	emory devices whice b) ROM	ch one you thir c) PR		? (d) EPROM)
34)	Application of Codes a) To represent nume c) To represent numb	erals & characters	b) To rep	resent alphab	_	•
35)	BCD is mainly used for a) representing the 10 b) representing the nucleon c) representing the 10 d) Representing the 1	numerals in decirumerals using 4-bit numerals using 4-bit numerals in decin	binary codes nal number sys	stem using 4-l	oit binary cod) de
36)	Conversion from Bina a) Keeping the first G b) Add each pair of a c) Disregard any carr d) Involves all the abo	ray digit as same a djacent bits in bina es	ry to get the ne		_ ()
37)	Unicode is a not a) 4-bit code			e d) 32-	(-bit code)
38)	The basic ASCII is a a			d) 16-	(-bit code)
39)	The mostly used and a) Diode logic c) Metal oxide semico		b) High thres	shold logic	_ ()
40)	a) Transistor-Transistor C) Resistor Transistor	,	e Transistor log	ic	(iconductor L)
41)	Max. Sink current of a) 2 mA. Max.	, ,		d) 10	()

42)	a) Num	Fan-in of digital gate means a) Number of inputs a gate can have o) Number of outputs a gate can have								()
	,		put and ates that	•	•						
43)	a) curre b) curre	ent supp ent acce _l ent suppl	nt is lied by th pted by t lied and	ne logic o the logic	device	logic dev	 vice			()
44)						ates on			n d	() None)
45)	2's con a) 101 <i>′</i>					c) 110		d)1	110	()
46)		ce which oder				segments c) Mult			None	()
47)		erter is ₋ gate		OR gate	е	c) ANE) gate	d)	None	()
48)		of the fol gate				l logic ga c) EXC		gate	d) N	(OT gate)
49)	a) Wei	ghted co	is knowr de entary c			, •	lic redur ebraic co	idancy co	ode	()
50)	The NO a) AND		is OR ga b)	NAND (gate	_ c) NO∃	_	d)	None	()
г						RS K		T		I	_
-	1	2	3	4	5	6	7	8	9	10	-
_	С	С	С	d	C	b	d	С	С	а	
	11	12	13	14	15	16	17	18	19	20	
-	d	С	b	b	d	a	a	b	С	d	
-	21	22	23	24	25	26	27	28	29	30	
-	a	С	a	d	d	a	C	a	a	C 40	_
-	31	32	33	34	35	36	37	38	39	40	-
	C 11	a 42	a 42	d	C 4.5	d	a 47	b 40	d	C 50	4
	41 b	42 a	43 a	44 c	45 a	46 b	47 a	48 c	49 c	50 c	
	2	ч	ч								

ST- 53: EMERGENCY COMMUNICATION

1)	Emergency control	communication sock	et is provided at eve	ery	()	
	a) 1000 mts	b) 100 mts	c) 915 mts	d) None		
2)	Emergency control a) Engineering cont c) Train loco contro		uit is monitored at Ho b) Traction Power o d) S&T controller		()	
3)	is for	communication sock	·		()	
	a) Trans pair	b) Receive pair	c) Signalling pair	d) Auto phon	е	
4)	Emergency control is for	communication sock	et has six pin in whi	ch pin no 2&5	()
	a) Trans pair	b) Receive pair	c) Signalling pair	d) Auto phon	е	
5)	Emergency control is for	communication sock	et has six pin in whi	ch pin no 3&4	()
	a) Trans pair	b) Receive pair	c) Signalling pair	d) Auto phon	е	
6)	Phone provided in E a) PT set c) Selective calling	Emergency socket is phone	b) Control phone d) Magneto phone		()	
7)	Mobile Phone SIM	used in ART for FCT b) JIO	are c) Idea	d) All	()	
8)	VHF frequency rang a) 30 Khz to 300 Kh c) 30 Mhz to 300 M	nz	b) 20 Hz to 20 Khz d) 300 Mhz t	o 3000 Mhz	()	
9)	25 watts VHF sets a a) All way stations c) Important station	·	b) Intermediate star d) All the above	tions	()	
10)	5 watts VHF set are a) Driver and Guard c) Both	•	b) All department s d) None	taff	()	
11)	Working voltage of a) 6 V DC	PT set b) 3 V DC	c) 12 V DC	d) 1.5 V DC	()	

12)	Working voltage of	25 watts VHF set			()
	a) 18 V DC	b) 7.5 V DC	c) 12 V DC	d) 24 V DC		
13)		n mode			()
	a) Simplex	b) Semi duplex	c) Duplex	d) Triplex		
14)		y the 25 watts VHF s		1) 45 16	()
	a) 25Kms	b) 5Kms	c) 10 Kms	d) 15 Kms		
15)		y the 5 watts VHF s		d) 2 4 Kma	()
	a) 4-6 Kms	,	c) 8-10 Kms	d) 2-4 Kms		
16)	-	reaches the derailme	•	. 1	()
	a) To provide Autoc) To provide Magn	•	b) To provide PT se d) All the above) L		
	, ,	•	d) All the above			
17)	INMARSAT phone		a) D a #a	d\ Nlama	()
	a) ART	b) MRV	c) Both	d) None		
18)			of different service p		()
	a) 1 No	b) 2 Nos	c) 3 Nos	d) 4 Nos		
19)	Minimum Horizonta	l distance of telepho	ne post from the cen	tre of the trac	k is()
	a) Height of the pos	t + 5 feets	b) Only 7 feets			
	c) Height of the pos	t + 7 feets	d) Only 5 feets			
20)	Number of Selective	e calling telephone s	ets should be availal	ole in ART	()
	a) 2 Nos	b) 3 Nos	c) 5 Nos	d) 4 Nos		
21)	FCT is a	_Router			()
	a) CDMA	b) GSM	c) Both	d) None		
22)	How many numbers	s of VHF 5 watts with	n 100% spare batteri	es will be		
	available				()
	a) 10 Nos	b) 20 Nos	c) 30 Nos	d) 40 Nos		
23)	How many numbers	s of 500 mts FS cab	le drums is available	in ART	()
	a) 4 Nos	b) 10 Nos	c) 6 Nos	d) 8 Nos		
24)	VHF set transmitting	g frequency and pow	ver are to be measur	ed once in	()
	a) Three months	b) Two months	c) a month	d) none		
25)	VHF systems failure	e must be reported to	o controlling officer		()
	a) Daily	b) Weekly	c) Monthly	d) None		

26)	A temporary fixed d	langer signal consist	ing of red cloth supp	orted at both (ends	
	with iron rod stretch	ned across the line is	called		()
	a) Hand signal	b) banner flag	c) Both	d) None		
27)	The LED used in lig	ght weight PT set is			()
	a) Red colour	b) White colour	c) Yellow colour	d) Multi colo	ur	
28)	Mbps inp	ut is given to Maple -	– 4c equipment		()
	a) 4	b) 2	c) 8	d) 32		
29)	Bandwidth supporte	ed for voice, video ar	nd data by V-SAT co	mmunication i	is()
	a) 8 Mbps	b) 4 Mbps	c) 2 Mbps	d) 16 Mbps		
30)	Which frequency ba	and is used for comm	nunication through V	-SAT	()
	a) C – band	b) Ku – band	c) Fxt-C band	d) None		

ANSWERS KEY

1	2	3	4	5	6	7	8	9	10
а	b	b	а	d	а	d	С	а	а
11	12	13	14	15	16	17	18	19	20
b	С	а	а	а	b	а	d	С	d
21	22	23	24	25	26	27	28	29	30
b	С	а	С	а	b	d	b	С	b

ST-54 : BASICS OF SATELLITE TECHNOLOGIES, VSAT & DISASTER MANAGEMENT COMMUNICATION

1)	The transmitter-recei	ver combination in th	ne satellite is known a	as a	()
	a. Relay	b. Repeater	c. Transponder	d. Du _l	olexer	
2)	What is the reason for a) More number of or c) More gain		ansponders in a sate b) Better reception d) Redundancy	ellite?	()
3)	Why are VHF, UHF, a a) More bandwidth c) Are not diffracted b		als used in satellite communication?(b) More spectrum space d) Economically viable)
4)	Which of the following a) MF	g bands cannot be u b) Ku	sed for satellite comi c) X	munication? d) C	()
5)	Which of the following a) Ground station c) Telemetry tracking		bsystem? b) Power system d) Communication s	subsystem	()
6)	Which of the following re-transmits the signal a) Repeater		ves, translates the sig	gnal frequency d) Transduce	()
7)	Which of the following signal using two mixed a) Single conversion c) Regenerative trans	ers transponders	ert the uplink signal to downlink b) Dual conversion transponders d) Dual mixer transponder		()
8)	When is the speed o	of the satellite maxim b) Posigrade	um in an elliptical ort c) Perigee	oit? d) Apogee	()
9)	The time period taker a) Lapsed time	n by the satellite to c b) Time period	omplete one orbit is c) Sidereal period	called d) Unit frequ	(ency)
10	To use a satellite for orbit will be the best? a) Circular orbit c) Geosynchronous or	,	or repeater purpose b) Elliptical orbit d) Triangular orbit	es what type c	f ()
11)What percentage of t a) 20	he earth can commu b) 50	nication satellites se	e? d) 40	()

12)What is the point on	the surface of the ea	arth that is directly be	low the satelli	te	
called?				()
a) Satellite point		b) Sub satellite poir	nt		
c) Super satellite poi	nt	d) Overhead point			
13) law states th	at the path followed	by the satellite arour	d the primary	will	
be an ellipse				()
a. newton's first law		b. kepler's first law			
c. kepler's second la	W	d. kepler's third law	,		
14)law states that fo	r equal time interval	s, the satellite will sw	eep out equal	areas	
in its orbital planes, f	ocused at the baryce	enter.		()
a. newton's first law		b. kepler's first law			
c. kepler's second la	W	d. kepler's third law	,		
15)Which of the followin	g comes under meth	nods of multiple acce	ss techniques	?()
a. FDMA & TDMA		b. SCPC & CDMA	·	•	•
c. CDMA & GSM		d. none of these			
16)What is meant by GF	PRS ?			()
a. General packet receiver service		b. General packet r	adio service	`	,
c. Global packet radi		d. none			
17)Television transmiss	ion is an example of	which type of transm	nission?	()
a. simplex	b. half duplex	c. full duplex	d. none	(,
·	•	·		,	`
 Collects a very weal a. helical antenna 	b. satellite dish	c. LNA	d.TWT	()
a. Helical afficilia	b. Satellite disti	C. LIVA	u. i vv i		
19)The earth area cover	-			()
a. beam width	b. band width	c. footprint	d. zone		
20)A satellite signal tran	smitted from a satel	lite transponder to ea	rth's station	()
a. up link	b. down link	c. terrestrial	d. earth bou	nd	
21)What band does VS/	AT first operate?			()
a. L-band	b. X-band	c. C-band	d. Ku-band	•	,
22)VSAT was made ava	nilahle in?			(١
a. 1979	b. 1987	c. 1983	d. 1973	(,
			u. 1070	,	
23)What kind of battery			1-	()
a. germanium based	•	b. silicon based par		rro\	
c. gallium phosphate	solar pariel array	d. gallium arsenide	solar panel al	пау	

,	,	ed by most satellites is	()
a. EHF	b. UHF	c. VHF	d. SHF	
b. travels around to		36000 km about Earth rs า	()
26)The VSAT techno a. wired satellite to c. both a & b	echnology	b. wireless satellite d. none)
27)The VSAT networ supporting the	ks offer value adde	d satellite based services	s capable of ()
a. internet	b. data	c. video	d. all	
28)The VSAT system a. Ku-band	n operates in two di b. C-band	fferent bands named c. both a & b	d. none)
29)The Ku-band netv a. Europe & north c. latin America	· ·	ed in b. asia & Africa d. both a & b	()
30)The C-band netwo a. Europe & north c. latin America	•	d in b. asia & Africa d. both b & c	()
31)Which band of fre a. Ku-band	quencies require th b. C-band	e large VSAT antenna c. both a & b	d. none)
32)Which band of fre a. Ku-band	quencies require th b. C-band	e smaller VSAT antenna c. both a & b	d. none)
33)The VSAT system a. 5.925 to 6.425 c. both a & b	•	band frequency are b. 3.7 to 4.2 GHz d. none	()
34)The VSAT system a. 6.725 to 7.025 c. both a & b	•	t-C band frequency are b. 4.5 to 4.8 GHz	()

35)The VSAT system operates under Ku-band frequency are (
a. 14.0 to 14.5 GHz		b. 10.95 to 11.7 (SHz		
c. both a & b		d. none			
36)Name the two major	· VSAT topology's			()
a. star & triangle	b. mesh & bus	c. star & mesh	d. ring & bus	3	
37)With a star topology	the VSAT terminal	transmits using		()
a. FDMA	b. FLST	c. CDMA	d. TDMA		
38)With a star topology	the hub terminal tra	ansmits using		()
a. TDMA	b. TDM	c. FDMA	d. CDMA		
39)VSAT is the acronyr	n for			()
a. very small apertu	re terminal	b. vertical satellite	e augmented te	rminal	
c. very small augme	nted terminal	d. none			
40)VSAT's are small st	ation with antenna	diameter from	ameter from		
a. 4 mtrs down to 1 mtrs		b. 6 mtrs down to	2 mtrs		
c. 2.4 mtrs down to	down to 45 cms d. 20 mtrs down to 5 mtrs				
41)Meshed networks a	re also known as			()
a. point to multipoin	networks	b. point to point n	etworks		
c. multipoint to multi	point networks	d. none			
42)E1 Modem transmis	sion speed is			()
a. 6 Mbps	b. 4 Mbps	c. 2 Mbps	d. 512 Kbps		
43)Components of VSA	AT network are			()
a. master earth stati	on	b. remote earth s	tation		
c. satellite		d. all of the above)		
44)The master earth sta	ation has a large	_meter antenna		()
a. 3 mtr	b. 6 mtr	c. 4 mtr	d. 2 mtr		
45)The remote earth st	ation of VSAT comp	orises of		()
a. outdoor unit (ODI	J)	b. indoor unit (IDI	J)		
c. inter facility line (I	FL)	d. all of the above	9		
46)Portable exchange ¡	provided in ART du	ring disaster is		()
a. Siemens hipath 3	800	b. coral 6000			
c. C-DOT exchange		d. none			

47) Number of 5 W VHF sets provided in ART is (
	a. 30 No's	b. 45 No's	c. 15 No's	d. 10 No's		
48) VSAT provided in ART supportscommunication						
	a. voice	b. data	c. video	d. all		
49)Frequency allotted fo	or ART communication	on in 5W VHF set is		()
	a. 147.975 MHz	b. 159.650 MHz	c. 161.425 MHz	d. 159.700 M	lHz	
50)Bandwidth hired for d	disaster communicati	on from INSAT-4CR	satellite is	()
	a. 2 Mbps	b. 4 Mbps	c. 8 Mbps	d. 34 Mbps		

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
С	а	С	а	а	С	b	С	С	С
11	12	13	14	15	16	17	18	19	20
d	b	b	С	а	b	а	b	С	b
21	22	23	24	25	26	27	28	29	30
С	а	d	d	d	b	d	С	а	d
31	32	33	34	35	36	37	38	39	40
b	а	С	С	С	С	а	b	а	С
41	42	43	44	45	46	47	48	49	50
b	С	d	b	d	а	а	d	а	а

ST-55: IP BASED VIDEO SURVEILLANCE SYSTEM & ISS

1)	RDSO Specification of IP Based video s a. RDSO/SPN/TC/65/2019 Revision 5.0 b. RDSO/SPN/TC/64/2019 Revision 5.0 c. RDSO/SPN/TC/65/2001 Revision 5.0 d. RDSO/SPN/TC/64/2010 Revision 5.0		()
2)	Advantage of IP Based video surveillan a. remote accessibility c. event management	ce system is b. high image quality d. all of the above	()
3)	Network cameras and video encoders ha. video motion detection. c. active tampering alarm	nave built-in features such as b. audio detection alarm d. all of the above	()
4)	Power over Ethernet (PoE) technology of a. digital video system c. both a & b	cannot be applied to b. analog video system d. none	()
5)	Type of RAID level used in IP based su a. RAID-2 b. RAID-3	rveillance system is c. RAID-4 d. RA	(ID-5)
6)	Video analytical software is used in a. touch screen system c. IVRS system	b. IP based video surveillance sy d. IPIS system	(stem)
7)	Which one is the image capturing techna. charged couple device (CCD) b. corc. megapixel sensor d. all		(ductor)
8)	Wireless transmitter/receiver unit uses _ a. 2.4 GHz b. 5.8 GHz	unlicensed frequency band c. both a & b d. nor)
9)	When connecting a camera, when dista cable is used a. OFC b. CAT cable		(d. Noi) ne
10)	Which is not the RDSO specification of a. RDSO/SPN/S/83/2008 c. RDSO/SPN/TC/81/2008	layer-3 switch is b. RDSO/SPN/TC/82/2008 d. ALL the above	()
11)	RAID full form is a. redundant array of independent disks c. redundant array of integrated disks	•)
12)	Minimum hard disk capacity required for a. 18TB b. 10 TB	or IP based Surveillance System c. 8 TB d. 36 TB	()

13)	a. digital video syste c. both a& b		b. analog video sys d. none	tem	()
14)	Minimum storage ca	apacity of video files b. 45 days	of IP based surveilla c.15 days	nce system d. 60 days	()
15)	Minimum capacity of a. 1 KVA	of UPS required for II b. 6 KVA	P based surveillance c. 10 KVA	system is d. 16 KVA	()
16)	Online UPS configu a. N+1 configuration c. N+3 configuration	1	IP based surveillance b. N+2 configuration d. N+4 configuration	า	()
17)	b. Under Vehicle Sc	system consists of ce system with IP ba canning System (UV ay baggage screening	SS).		()
18)	Video analytic softwa. intrusion detections. overcrowding		following feature b. left object d. all of the above	detection	()
19)	Video Analytics and a. Servers	Face Recognition S b. clients	Software shall be dep c. desktop pc	loyed on d. router	()
20)	Provision for Viewin a. Divisional HQ c. RPF / GRP thana		Camera streams shab. any other central d. all of the above.	•	at()
21)	Video surveillance s a. non-RE area only c. both a & b	-	ould be installed at b. RE area only d. none		()
22)	NVR (Network Vide a. recording	eo Recorder) should b. Replay	d support c. backup	d. all	()
23)	NVR records upto a. video only	•	c. both a & b	d. none	()
24)	Type of alarm receiva. motion detection	ved by NVR from vic b. video loss	leo servers to start a c. trigger inp	_	()
25)	Specification of Pow a. 3core 2.5 sqmm. c. 3 core 1.5 sqmm	ver cable used in IP	based video surveilla b. 2 core 2.5 sqmm d. none	•	s ()

26)	For connecting analog camera to video encodercable is used)
	a. RG-11	b. RJ-45	c. RG-58	d. OFC		
,		a maximum distand b. 200 mtrs	e of up to mtrs c.300 mtrs	d. 500 mtrs	()
28)			nce of up to mtr		()
,) Type of camera installed at platforms & foot over bridge is a. full HD bullet type IP colour camera b. full HD fixed dome type IP came. b. Full HD P/T/Z IP colour camera d. all of the above				(nera)
30)	 Intrusion detection feature generates alarm when a. People crossing the tracks at platform ends b. Object/ baggage left behind at platform c. scene is over-crowded)
	d. all of the above					

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
а	d	d	а	d	b	d	С	а	d
11	12	13	14	15	16	17	18	19	20
а	а	а	а	b	а	d	d	а	d
21	22	23	24	25	26	27	28	29	30
С	d	С	d	а	а	а	С	а	а

ST-56: RADIO COMMUNICATION

An electromagnetic wave consists of a. Both electric and magnetic fields. b. an electric field only					()
	c. A magnetic field or	nly	d. Non-magnetic field only			
2)	What is the lowest la a. F1	yer of the ionosphero	e? c. E	d. D	()
3)	Frequencies in the U a. Ground waves	HF range propagate b. Sky waves	by means of c. Surface waves	d. Space way	(/es)
4)	Fading due to interfe a. atmospheric-multip c. reflection-multipath	path	t and reflected rays. b. Fresnel zone d. Rayleigh fading		()
5)	What layer is used fo a. D Layer	or high-frequency day b. E Layer	time propagation? c. F1 Layer	d. F2 Layer	()
6)	By which name/s is a a. Sea wave propaga c. Sky wave propaga	ation	gation, also known a b. Ground wave pro d. All of the above		()
7)	Velocity of a radio wa a.186, 000 miles per c.162, 000 nautical n	sec	b. 300x10 ⁶ meters pd. All of the above	oer sec	()
8)	Diffraction of electron a. is caused by reflect b. arises only with sp c. will occur when the d. may occur around	ctions from the groun herical wave fronts e waves pass throug	h a large slot		()
9)	Microwave signals portion a. Line of sight propase. Surface wave		ne b. Sky wave d. Standing wave		()
10)	The ionosphere caus	ses radio signals to b b. Absorbed	e c. Refracted	d. Reflected	()
11)	Ground wave commu a. 300 KHz to 3 MHz		fective in what freque c. 30 to 300 MHz		() MHz)
12)	The ionosphere has a. 300 KHz to 3 MHz		signals in what frequ)

13)	a. pass into a medium b. are polarized at rig c. encounter a perfect d. pass through a sm	m of different diel ght angles to the ctly conducting so	lectric constants direction of propagatio	· on	()
14)	Fluctuation in the sig	nal strength at th b. Fading	ne receiver. c. Tracking	d. Variab	(le freque) ency
15)	Two or more antenna a. Space diversity c. Hybrid diversity	as are used sepa	nrated by several wave b. Frequency dive d. Polarization di	ersity	()
16)	Two or more receive a. Space diversity c. Hybrid diversity	rs are used usinç	g a single antenna. b. Frequency dive d. Polarization di	-	()
17)	What is the relation i electromagnetic wav a. 180° .	•	electric and magnetic c. 270 ⁰		(45 ⁰)
18)	A diversity scheme was different directions. a. Frequency diversity c. Angle diversity		ver receives two fadino b. Time di d. Space o	versity	n two ()
19)	The range of frequer a. 30 GHz – 300 GHz c. 3 GHz – 30 GHz		as super high frequen b. 30 MHz – 300 d. 300 MHz – 3 0	MHz	within ()
20)	The range of frequer a. 300KHz – 300 KH c. 30MHz – 300MHz	Z	as high frequency (HF b. 3 MHz – 30 MI d. 300 MHz – 3 G	Hz	()
21)	b. A fading caused b transmission as expe c. A fading caused b the receiving station	used by small cha y phase difference erienced at the re y large changes i	anges in beam heading be between radio wave eceiving station in the height of the ion difference between the	e component	s of the	same ced at

<i>22)</i>	 a. Alternating currents in the core of an electromagnet b. A wave consisting of two electric fields at right angles to each ot c. A wave consisting of an electric and magnetic field at right angle d. A wave consisting of two magnetic fields at right angles to each 	s to each other	,
23)) To increase the transmission distance of a UHF signal, which of the to do? a. Increase antenna gain b. Increase anten c. Increase transmitter power d. Increase receives	(na height)
24)) Electromagnetic waves transport a. Wavelength b. Charge c. Frequency d. E	nergy)
25)) Line of sight communications is not a factor in which frequency ran a. VHF b. UHF c. HF d. M	ge? (licrowave)
26)) Way(s) of propagating electromagnetic waves: a. Ground-wave propagation b. Space wave propagat c. Sky-wave propagation d. All of these	(ion)
27)) The process of inter changeability of receiving and transmitting operantennas is known as a. Polarization b. Reciprocity c. Efficiency d. C	erations of (counterpoise)
28)) The antenna gain relative to the isotropic radiator is a. dB b. dB _d c. dB _i d. All the a	(bove)
29)) The antenna gain relative to a dipole antenna is a. dB b. dB _d c. dB _i d. All the a	(bove)
30)) The angular separation between the half-power points on an anten pattern is the a. Bandwidth b. Front-to-back ratio c. Lobe distribution d. Beam width	na's radiation ()
31)) At which angles does the front to back ratio specify an antenna gai a. 0° & 180° b. 90° & 180° c.180° & 270° d.180° & 3)
32)) What is the nature of radiation pattern of an isotropic antenna? a. Spherical b. Dough-nut c. Elliptical d. Hyperbo	(olic)
33)) Which conversion mechanism is performed by parabolic reflector a a. Plane to spherical wave b. Spherical to plane wave c. Both a & b d. none of the above	ntenna?()
34)) Which kind of polarization is provided by Ground plane antennas? a. Plane b. Elliptical c. Circular d. ve	(ertical)

35)	Reciprocity theorem? a. Equality of impedances b. Equality of directional patterns c. Equality of effective lengths d. All of the above	()				
36)	Smart antennas can be categorized as a. Single input, multiple out (SIMO) b. Multiple input, single output (MIMO) c. Multiple input, multiple output (MIMO) d. All of the above	(ISO))				
37)	The beam width in directive antennas is in the sectorial antenna a. Narrower than b. Same as c. Broader than d. Non	(ne)				
38)	 The Smart antennas can be classified as a. Switched beam antennas b. Adaptive Array antennas c. Both a & b d. None of them 						
39)	The features of Smart antenna is/are a. Signal gain b. Inference rejection c. Power efficiency						
40)	Omni directional antennas always have polarization a. Horizontal b. Vertical c. Both a & b d. None of the	(em)				
41)	An Antenna is classified based on a. Frequency b. Size c. Directivity d. All of the a	(lbove)				
42)	The magnetic field of an antenna is perpendicular to the earth. The antenna polarization a. is vertical b. is horizontal c. is circular d. cannot be determined from the information g	()				
43)	Yagi antennas have again from a. 5 to 10 dBi b. 10 to 20 dBi c. 20 to 30 dBi d. None	()				
44)	Which mode of propagation is adopted in HF antennas? a) Ionospheric b) Ground wave c) Tropospheric d) all	()				
45)	Which type of wire antennas are also known as dipoles? a. Linear b. Loop c. Helical d. All	()				
46)	Linear polarization can be obtained only if the wave consists of a. E_x b. E_y c. Both E_x & E_y & in phase d. Both E_x & E_y & out of p	(hase)				
47)	Radiation pattern is dimensional quantity a. Two b. Three c. Single d. None	()				
48)	An antenna made up of a driven element and one or more parasitic element	ts is					
	generally referred to as a a. Hertz antenna b. Marconi antenna c. Collinear antenna d. Yagi antenna	()				

49)	What is an antenna? a. Impedance matchin b. Sensor of electroma c. Transducer between d. Metallic device for ra	agnetic waves n guided wave & fre	•		()
50)	The shape of the electromagnetic energy antenna is called the a. signal shape c. radiation pattern		radiated from or rece b. electromagnetic p d. antenna pattern	-	()
51)	Types of polarization a a. Two types	are o. Thee types	c. Four types	d. None	()
52)	Signal with a frequence a. ground	-		on. d. none	()
53)	A parabolic dish anten		nna. c. unidirectional	d. horn	()
54)	Signals with a frequen a. ground	_	and 30 MHz use c. line of sight	propagation. d. none	()
55)	FM radio uses frequen		range. c. HF	d. VHF	()
56)	The minimum number isa) 1		satellites needed to c) 3	cover the ear	th ()
57)	When a signal loses en	nergy in overcomino	g the resistance of a c) Noise	medium, this	is ()
58)	Frequencies lying imma a) High frequency c) Low frequency	nediately below VHF	HF are referred to as b) Ultra high frequency d) Ultra low frequency)
59)) What is the frequency range of VHF (Ver a) 30 MHz to 300 MHz c) 30 KHz to 300 KHz		ery high frequency) b) 30 Hz to 300 Hz d) 30 MHz to 300 MHz)
60)	Radio operations used a) Amplitude modulation c) Phase modulation		unication make use of b) Frequency modulation d) Channel Modulation)

61)	What is the full form			()	
	a) Shaky-sideband m	nodulation	b) Separated-sidel	oand modulation	on	
	c) Sorted-sideband n	nodulation	d) Singe-sideband	modulation		
62)	The section of electro	omagnetic spectrum	defined as radio co	mmunication is	3	
	divided into				()
	a) 5	b) 6	c) 7	d) 8		
63)	Radio communication	n ranges from a fregi	uency of to a fre	eguency of	()
,	a. 3 KHz; 300 MHz		b. 3 KHz; 300 GHz	-	_ \	,
	c. 3 MHz; 300 GHz		d. 3 GHz; 300 THz			
64)	When radio waves tra	avel from the lowest			a the	
04)	earth, this is called _		•	spriere, riuggiri	ly tile)
	a. surface	b. tropospheric		d line-of-sig	ht	,
05\			·	J		`
65)	Long-range radio nav				()
	a. VLF and LF	b. LF and MF	c. Wif and HF	a. HF and U	ПГ	
66)	AM radio uses freque	encies in the	_ range		()
	a. LF	b. MF	c. HF	d. EHF		
67)	FM radio uses freque	encies in the	_ range		()
	a. LF	b. MF	c. HF	d. VHF		
68)	Mobile telephones us	se frequencies in the	range.		()
,	a. UHF	b. MF	c. HF	d. EHF	`	,
60)	In the transmission o	f terrestrial microway	ves can rege	nerate the sig	nal	
09)	at each antenna.	i terrestriai microwat	ves,can rege	illerate the sig	liai (١
	a. repeaters	h hridges	c routers	d. any of the	(ahove)
70)	•	-		-		
70)	In a a wide	range of incoming w	aves is directed to a	a common poir	,	
	the focus.	allita a narabali	a diab antanna	d any of the	`)
	a. repeater b. sate	·		•	above.	
71)	Frequencies for sate				()
	a. millihertz	b. megahertz	c. gigahertz	d. terahertz		
72)	Signals with a freque	ncy below 2 MHz us	e propaga	tion.	()
	a. Ground	b. sky	c. line-of-sight	d. none		
73)	Radio waves are				()
,	a. Omnidirectional		c. bidirectional	d. none	`	,
7 4\	are used for cell				s ()
, , ,	a. Radio waves	-	es c. Infrared v		-)
	a. I tadio Waves	b. Iviiorovave	o. iiiiiaica v	u. 1101		

75)	are used for short-r	ange commur	nications such	as those betv	veen a	PC	
	and a peripheral device.					()
	a) Radio waves	b) Microwave	es c) Infra	ared waves	d) non	е	
76)	The purpose of is	to compensat	e for an attenu	ated signals l	loss.	()
	a. an antenna b. An Amplifi	er c. a transmi	itter d. an LED				
77)	The measures the	relative streng	ths of two sign	als or a signa	al at two	o diffei	ren
,	points	J	J	· ·		()
	a. Decibel b. power	c. Shannon d	capacity	d. signal-to-n	oise ra	tio	
78)	A loss of 3 dB is equivalent	to				()
,	a. losing 3 times the power		b. Losing Hal	f The Power		`	,
	c. gaining 3 times the powe	r	d. gaining hal	f the power			
79)	What formula calculates th	e dB of a sign	al at points 1 a	ınd 2 (P1and	P2)	()
,	a. dB = P2/P1	- - - - - - - - - - -	b. dB = log10	•	,	`	,
	c. dB = 10 log10 (P2/P1)			•			
80)	The performance of transm	ission media i	s often measu	red by		()
,	a. throughput b. propagation			-	<u> </u>	`	,
21\	The of a sine wave	•				1	١
01)	a. amplitude b. pha	-	c. Wavelengt	-	d. any	•	,
00)	·		o. wavelengt		a. arry	/	`
82)	In the formula $\lambda = c/f$, c is the analysis of the second	ie	h fraguanay			()
	a. wavelengthc. speed of light in a vacuur	n	b. frequencyd. Propagatio	n Sneed			
20)			a. i Topagado	пороса		,	,
83)	The propagation time is		h propagatio	n anaad / diat		()
	a. Distance / Propagation Sc. distance / decibel	peed	b. propagatiod. distance / v	•	.ance		
0 4\				J		,	
84)	The of a sine wave	-	_	_		()
	a. amplitude b. pha		c. Wavelengt		d. any	one	
85)	The wavelength is the dista	•	•			()
	a. in one second b. in o	one ms	c. In One Per	iod	d. non	е	
86)	A geosynchronous orbit is 2	22,000 miles fr	om earth at th	e		()
	a. North Pole b. Tropic of (Capricorn	c. Equatorial	Plane	d. a ar	nd b	
87)	What is the advantage of us	sing a satellite	in microwave	communication	on.	()
	a. The limitations imposed of	on distance by	the earth's cu	rvature is red	uced.		
	b. Remote areas can be se	rviced.					
	c. Leasing time or frequenc	ies is relatively	y inexpensive.				
	d. All of The Above						

88)	In a a v	wide range of inco	ming waves is	s directed to a	common poin	nt	
	called the focus					()
	a. repeater	b. satellite	c. Parabolic	Dish Antenna	d. any	one	
89)	The two highest	radio communica	tion bands us	e frequencies p	propagated m	ainly	
	through	_				()
	a. Space b	. the ionosphere	c. the tro	posphere	d. the atmo	sphere	е
90)	In 5 Watt VHF, o	channel allocated	for S&T depar	tment is		()
	a. channel no. 0	6	b. cha	annel no. 08			
	c. channel no. 1	0	d. cha	annel no. 12			
91)	In 5 Watt VHF. o	channel allocated	for Driver & G	uard communio	cation is	()
• . ,	a. channel no. 0			annel no. 08		`	,
	c. channel no. 1			annel no. 12			
02)	In 5 Watt VHE	channel allocated	for ART is			1	١
32)	a. channel no. 0			annel no. 04		(,
	c. channel no. 0			annel no. 04			
93)		requency allocate	•			()
	a. 159.650 MHZ	b. 161.150 i	VIH∠ c. 162	2.100 MHZ	d. 147.975 N	1HZ	
94)	In 5 Watt VHF, f	requency allocate	d for driver &	guard commun	ication is	()
	a. 159.650 MHZ	b. 161.150 I	ИHZ с. 162	2.100 MHZ	d. 147.975 N	1HZ	
95)	In 5 Watt VHF, f	requency allocate	d for ART dep	artment is		()
	a. 159.650 MHZ	b. 161.150 I	ИHZ с. 162	2.100 MHZ	d. 147.975 N	1HZ	
96)	Working voltage	of 5 Watt VHF se	et is			()
,	a. 5 V D.C	b. 7.5 V D.C		V D.C	d. 24 V D.C	`	,
97)	Working voltage	of 25 Watt VHF s	ent is			(١
31)	a. 5 V D.C	b. 7.5 V D.C		V D.C	d. 24 V D.C	(,
					u. 21 v b.o	,	
98)		ion used in VHF				()
	a. AM	b. FM	c. QP	SK	d. all		
99)	Type of antenna	used in 25Watt \	/HF set is			()
	a. Helical antenr	na	b. GF	o antenna			
	c. Parabolic Ant	enna	d. Ya	gi uda antenna			
100)	5 Watt VHF Set	supports a distan	ce of			()
	a 35 KM to 4 K	M b 5 KM to 1	0 KM c.	10 KM to 15 KN	/ dunt	o 50 K	М

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
а	d	d	С	а	С	d	d	а	С
11	12	13	14	15	16	17	18	19	20
а	b	а	b	а	b	b	С	С	b
21	22	23	24	25	26	27	28	29	30
b	С	b	d	С	d	b	а	b	d
31	32	33	34	35	36	37	38	39	40
а	а	b	d	d	d	а	С	d	b
41	42	43	44	45	46	47	48	49	50
d	b	b	а	а	С	b	d	d	С
51	52	53	54	55	56	57	58	59	60
b	С	С	b	d	С	а	а	а	а
61	62	63	64	65	66	67	68	69	70
d	d	b	а	а	b	d	а	а	С
71	72	73	74	75	76	77	78	79	80
С	а	а	b	С	b	а	b	С	d
81	82	83	84	85	86	87	88	89	90
С	d	а	С	С	С	d	С	а	b
91	92	93	94	95	96	97	98	99	100
d	а	а	b	d	b	С	b	b	а

ST-57: ADVANCE IP NETWORK, NMS & SECURITY OF NETWORK

1)	Which of the followi	ng services use TCF	⊃?				()
	a) SMTP	b) HTTP	c) FTF	5	d) all			
2)	What layer in the To	CP/IP stack is equiva	alent to	the Transport	t layer of	the C	SI	
	model?						()
	a) application	b) host to host	c) inte	ernet	d) netw	ork ac	cess	
3)	Which of the followi	ng is private IP addr	ess?				()
	a) 12.0.0.1	b) 168.172.19.39	c) 172	2.15.14.36	d) 192.	168.24	4.43	
4)	Which of the followi	ng allows a router to	respoi	nd to an ARP	request	that is	;	
	intended for a remo						()
	a) gateway DP	b) reverse A	RP	c) proxy ARF	, (l) inve	erse AF	RP
5)	Which of the followi	ng services use UDI	P?				()
	a) SMTP	b) DHCP	c) TF	ГР	d) all			
6)	Which class of IP ad	ddress provides a m	aximun	n of only 254 l	nost add	resse	s per	
	network ID?						()
	a) Class A	b) Class B	c) Cla	ss C	d) Class	s D		
7)	If you use either Tel	Inet or FTP, which is	s the hig	ghest layer yo	u are usi	ng to		
	transmit data?						()
	a) Application	b) Presenta	tion	c) Session	C	d) Trai	nsport	
8)	Which of the following	ng are layers in the	TCP/IP	model?			()
	a) Application	b) Transpor	t	c) Internet	C	d) all		
9)	Which layer 4 proto	col is used for a Teli	net con	nection?			()
	a) IP	b) TCP	c) TC	P/IP	d) UDP			
10)	What protocol is use	ed to find the hardwa	are add	lress of a loca	l device?	>	()
	a) RARP	b) ARP	c) IP		d) ICMF)		
11)	Which of the followi	ng protocols uses b	oth TCF	and UDP?			()
	a) FTP	b) SMTP		c) Telnet	C	d) DNS	S	
12)	A network Router w	orks at a layer of	f an OS	I reference m	odel.		()
	a) Layer 1	b) Layer 2	c) Lay	ver 3	d) Laye	r 4		
13)	A network Router de	evice connects two	or more	e networks	S.		()
	a) LAN	b) WAN		c) both a & b	C	d) non	е	
14)	A network bridge de	evice works at lay	er of O	SI reference r	nodel.		()
	a) Layer 1	b) Layer 2	c) Lay	ver 3	d) Laye	r 4		
15)	A network switch wo	orks at layer of a	OSI ref	ference mode	l.		()
,	a) Layer 1		c) Lay		d) Laye	r 4	-	•

16)	Choose a WAN dev a) bridge	ice from the below li b) router	st. c) gateway	d) all	()
17)	Choose a LAN oper a) LAN server		ne below list. c) omni net	d) all	()
18)	The three main serva) file server	rices used in a LAN a b) print server	are c) sharing internet	d) all	()
19)	The technologies us a) SONET		rk are c) ATM d) all		()
20)	The largest WAN exa) extranet	tisting on this earth i b) Internet		d) SONET	()
21)	CYBER Security is a a) Network security		c) Computer securi	ty d) all	()
22)	Elements of cyber s a) Application secur	-	ecurity c) information	on security	(d) all)
23)	These provide basic a) Firewall	level security when b) Gateways	user connects to the c) modems	internet. d) both a and	(l b)
24)	Any computer progr computer user is cal a) Malicious softwar c) application softwar	lled re	to do things that are I b) System software d) none	narmful to a	()
25)	Key controls of cybera) Secure configuration (c) malware protection	tion	b) Patch manageme d) all	nt	()
26)	Vulnerabilities of a r a) Technology weak c) configuration wea	nesses	b) Security weaknes d) all	ses	()
27)	Technology weakne a) TCP/IP Protocol v c) Network equipme	weakness	b) Operating system d) All	weakness	()
28)	Unsecured user accounts is what type of a) Technology weaknesses c) Security weaknesses		,		()
29)	lack of written security policy is what typ a) Technology weaknesses c) Security weaknesses		e of weakness b) configuration wea d) none	knesses	()
30)	threats which arise f	from individual or orç	ganization working ou	tside of a	()

	a) structured threatc) internal threat		b) unstructured threatd) external threat				
31)		from hackers who a	re highly motivated and tec	hnically			
	competent are a) structured threat c) internal threat		b) unstructured threat d) external threat	()		
32)	threats occur when	someone has author	rized access to the network	with either			
	an account on a sera) structured threatc) internal threat	ver or physical acce	ss to the network are b) unstructured threat d) external threat	()		
33)	threat arising mostly a) structured threat c) internal threat	y by individuals using	g hacking tools are b) unstructured threat d) external threat	()		
34)		. •	thorized access to network	resources			
	with malicious inten a) hacker	t is called b) phreaker	c) white hat	d) all)		
35)	35) an individual who manipulates the phone network to cause it to perform a function that is normally not allowed is called ()						
	a) hacker	b) phreaker	c) white hat	d) all)		
36)	An individual who s	sends large amount o	of unsolicited e-mail messa	ges is	١		
	a) spammer	b) phreaker	c) white hat	d) all	,		
37)	unauthorized disco	very and mapping of	f system, services or vulner	abilities is			
	called as a) reconnaissance	b) access	c) denial of service	d) virus)		
38)	Reconnaissance att	,	,	, ()		
	a) Packet sniffers	b) Port scan	c) ping sweep	d) all			
39)	Access attack consi		on c) port redirection	d) all)		
40)	Password attack ca a) Brute-force attack	n be implemented us k b) Trojan ł	sing norse program c) IP Spo	(pofing d) :) all		
41)	Denial of Service (Da) Ping of death	ooS) threats are b) E-mail bomb	c) CPU hogging d) all	()		
42)	Which attack modifi a) Ping of death	es the IP portion of t b) E-mail bomb	he header c) CPU hogging d) all	()		
43)	,	tware program that o	can replicate itself and sprea c) Trojan horses	ad from one (d) spyware)		

Flooding the interne	•	of same messages is	5	()
a) SPAM	b) BOTNET	c) Adware	d) Spyware		
Which malware crea	ates backdoor on you	ur computer and stea	als information	and	
cause damage.	h) \\/ a waa a	a) Tuaian ban		()
,	•	c) Trojan nor	ses a) spy	ware	
		c) public writing	d) nublic read	(dina)
,	,	, .	d) public read	/ /	`
a) Encryption	b) Decryption	c) both	d) none	()
Which algorithm tra	nsforms cipher text i	nto plain text		()
a) Encryption	b) Decryption	c) both	d) none		
	• • •	-		()
a) 3	b) 4	c) 5	d) 6		
• • • • • • • • • • • • • • • • • • • •	•		1) 11	()
,	-	, .	a) all		
• • • • • • • • • • • • • • • • • • • •	•	, ,, , ,	d) both b 8 o	()
,	,	c) private key	a) boin b & c	,	`
•		ted c) character	oriented	(d) all)
•	, ,	of onaractor	onomou	<i>(</i>)
a) Bit oriented		ted c) character	oriented	d) all	,
A digital signature p	provides what type of	services		()
a) Security transmis	ssion	b) Message integrit	y	•	,
c) message authent	tication	d) all			
-	-	-		()
a) NIC	b) e-mudra	c) IDRBT	d) ALL		
	•			()
a) 4	b) 5	c) 6	d) 7		
•	<u> </u>	\ 0	1) 7	()
•	,	c) 6	a) /		
•		h) Application layer		()
•	(11.)	, , ,			
, .	model is	, = · , - -		(١
•		c) Physical layer	d) Data layer		,
	a) SPAM Which malware creacause damage. a) Virus Cryptography mean a) Secret writing Which algorithm tra a) Encryption Which algorithm tra a) Encryption Cryptography deal va a) 3 What type of key is a) Secret key What type of key is a) Secret key Modern cipher are a) Bit oriented Traditional cipher ar a) Bit oriented A digital signature pa a) Security transmis c) message authent Digital signatures ar a) NIC TCP/IP has how ma a) 4 OSI Layers has how a) 4 Third layer in TCP/I a) Internet Protocol c) Physical layer Fourth layer in OSI	a) SPAM b) BOTNET Which malware creates backdoor on you cause damage. a) Virus b) Worms Cryptography means a) Secret writing b) Secret reading Which algorithm transforms plain text intal entryption b) Decryption Which algorithm transforms cipher text intal entryption b) Decryption Cryptography deal with how many types end in symmetric end	a) SPAM b) BOTNET c) Adware Which malware creates backdoor on your computer and stead cause damage. a) Virus b) Worms c) Trojan hor Cryptography means a) Secret writing b) Secret reading c) public writing Which algorithm transforms plain text into cipher text a) Encryption b) Decryption c) both Which algorithm transforms cipher text into plain text a) Encryption b) Decryption c) both Cryptography deal with how many types of keys a) 3 b) 4 c) 5 What type of key is shared in symmetric key cryptography a) Secret key b) Public key c) private key What type of key is shared in symmetric key cryptography a) Secret key b) Public key c) private key Modern cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character Traditional cipher are what oriented b) Byte oriented c) character Traditional cipher are what oriented b) Byte oriented c) character Traditional cipher are what oriented b) Byte oriented c) character Traditional ciph	Which malware creates backdoor on your computer and steals information cause damage. a) Virus b) Worms c) Trojan horses d) spy Cryptography means a) Secret writing b) Secret reading c) public writing d) public read which algorithm transforms plain text into cipher text a) Encryption b) Decryption c) both d) none Which algorithm transforms cipher text into plain text a) Encryption b) Decryption c) both d) none Cryptography deal with how many types of keys a) 3 b) 4 c) 5 d) 6 What type of key is shared in symmetric key cryptography a) Secret key b) Public key c) private key d) all What type of key is shared in symmetric key cryptography a) Secret key b) Public key c) private key d) both b & c Modern cipher are what oriented a) Bit oriented b) Byte oriented c) character oriented Traditional cipher are what oriented a) Bit oriented b) Byte oriented c) character oriented A digital signature provides what type of services a) Security transmission b) Message integrity c) message authentication d) all Digital signatures are issued by which authority a) NIC b) e-mudra c) IDRBT d) ALL TCP/IP has how many layers a) 4 b) 5 c) 6 d) 7 OSI Layers has how many layers a) 4 b) 5 c) 6 d) 7 Third layer in TCP/IP is a) Internet Protocol (IP) b) Application layer c) Physical layer Fourth layer in OSI model is	a) SPAM b) BOTNET c) Adware d) Spyware Which malware creates backdoor on your computer and steals information and cause damage. (a) Virus b) Worms c) Trojan horses d) spyware Cryptography means (a) Secret writing b) Secret reading c) public writing d) public reading Which algorithm transforms plain text into cipher text (a) Encryption b) Decryption c) both d) none Which algorithm transforms cipher text into plain text (a) Encryption b) Decryption c) both d) none Which algorithm transforms cipher text into plain text (a) Encryption b) Decryption c) both d) none Cryptography deal with how many types of keys (a) 3 b) 4 c) 5 d) 6 What type of key is shared in symmetric key cryptography (a) Secret key b) Public key c) private key d) all What type of key is shared in symmetric key cryptography (a) Secret key b) Public key c) private key d) both b & c Modern cipher are what oriented (a) Bit oriented b) Byte oriented b) Byte oriented c) character oriented d) all Traditional cipher are what oriented (a) Bit oriented b) Byte oriented b) Byte oriented c) character oriented d) all A digital signature provides what type of services (a) Security transmission b) Message integrity c) message authentication d) all Digital signatures are issued by which authority (a) NIC b) e-mudra c) IDRBT d) ALL TCP/IP has how many layers (a) 4 b) 5 c) 6 d) 7 Third layer in TCP/IP is (a) Internet Protocol (IP) b) Application layer (c) Physical layer Fourth layer in OSI model is (c) Court of the court of t

60)	MAC address abbre	eviation is			()
	a) Media Access Co	ontrol	b) Media Authority	Centre		
	c) Media Access Co	ode	d) Media Authority	Code		
61)	VPN abbreviation is	S			()
,	a) Virtual private ne	twork	b) Virtual public net	work	•	•
	c) virtual personal n	etwork	d) virtual presentati	on network		
62)	Which mode protec	ts the network layer	navload		()
5 _)	a) Transport mode	-	c) Both	d) none	`	,
63)		,	, packet including orig	,	(١
00)	a) Transport mode	•	c) Both	d) none	(,
64)		3, 1 3	3, 23	-,	1	١
04)	Example of VPN is a) Team Viewer	b) Skype	c) Zoom	d) all	()
 \	•	,	C) 200111	u) ali	,	
65)	SSL/TLS provide w		-)		()
	a) Fragmentation	b) Compression	c) message integrit	y d) frar	ning	
66)	•	, , , , , , , , , , , , , , , , , , ,	at protect computing	systems and		
		ıthorized users is cal			()
	a) Firewalls	b) Servers	c) Modems	d) switches		
67)	Firewall provides se	ecurity from which lay	yers in OSI model		()
	a) Layer-1 to 3	b) Layer-3 to 5	c) layer-3 to 7	d) layer-5 to	7	
68)	Packet filter firewall	is a part of which de	evice		()
	a) Switch	b) Router	c) Modem	d) pc		
69)	HTTP port number	is			()
,	a) 21	b) 23	c) 80	d) 25	`	,
70)	UTM stands for	,	,	•	(١
10)	a) Unified treat man	nagement	b) Universal treat m	anagement	(,
	c) undefined transp	_	d) user transfer mo	J		
71)	,	can be defined based	•		1	١
, ,	a) IP Address	b) Ports	c) domain names	d) all	()
70\	,	,	,	a) an	,	`
72)	•	ints broadcast thems	<u> </u>	ط/ ماا	()
	a) SSID	b) IP address	c) MAC address	d) all		
73)	Default IP address	•			()
	a) 192.168.1.1	b) 192.168.0.1	c) 10.195.2.20	d) both a & b)	
74)	Default user name	of access point is			()
	a) Admin	b) User	c) Root	d) all		
75)	DHCP stands for				()
	a) Dynamic host co	nfiguration protocol	b) Dual host	control protoc	ol	
	c) dual host console	e protocol	d) dynamic host console protocol			

76)	MAC address bit ler a) 8-bit	ngth is b) 16-bit	c) 48-bit	d) 32-bit	()
77)	Encryption protocol	s are b) WEP	c) WAP-2	d) all	()
78)	End point protection a) Anti-virus softwar c) device control	•	b) Anti-malware so d) all	ftware	()
79)	Anti-virus software ¡	protects from b) Worms	c) Trojan horses	d) all	()
80)	Software that preve and removable med a) Device control c) anti-malware soft		d point use of connection white d) anti-virus softwa	e-listing	evices ()
81)	Software which is in sensitive information a) End point data loc) application white-	ss prevention	vertent and intention b) Device control d) anti-malware sof		()
82)	 Software which is geared towards controlling and protecting mobile devices a) Enterprise mobile device management b) End point data loss prevent c) application white-listing d) anti-malware software)
83)	When was informat a) October 2000	ion technology act er b) November 2001	nforced in india c) march 2000	d) October	(- 2002)
84)		th cyber crime and el nology act-2000 ogy act-2000		logy act-2000	()
85)	Information technologies a) 94 sections	ogy act contains how b) 66 sections	many sections c) 20 sections	d) 50 section	(s)
86)	Section of IT ACT-2 documents is a) Section 65	2000 which deals with b) Section 66	n tampering with cor c) section 94	mputer source d) section 90	()
87)	Section of IT ACT-2 a) Section 65	2000 which deals with b) Section 66	n hacking with comp c) section 94	outer system is d) section 90	•)
88)	Section of IT ACT-2 a) Section 66 C	2000 which deals with b) Section 66	n using password of c) section 94	another perso d) section 90	•)
89)	Section of IT ACT-2 a) Section 65	2000 which deals with	•		()

90)	Section of IT ACT-2 a) Section 65	2000 which dea b) Section 66			())
91)	Section of IT ACT-2 a) Section 65	2000 which dea b) Section 66		ccess a protected sy d) section 90)
92)	Section of IT ACT-2 a) Section 65	2000 which dea b) Section 66	_		=)
93)	CERT-In stands for a) Indian computer b) Indian computer c) Indian crime eme d) Indian crime exp	emergency resexpert responsergency respon	se team ise team		()
94)	Under which section a) Section 70B	n of the IT ACT b) Section 65	CERT-In designate c) section 66	ed d) section 67	(7)
95)	CERT-In will address a) Individual c) private domain	ss all types of o	•	nts related to nt organization	()
96)	What is the use of pa a) To test a device of b) To test a hard did c) To test a bug in a d) To test a printer of	on the network isk fault a application			()
97)	What is the meaning a) Transmission capt b) Connected compt c) Class of IP used d) None of the about	pacity of a com outers in a netw in network	nmunication channel		()
98)	Network congestion a) In case of traffic connection	overloading	nodes terminates	b) When a system of	(termina) ites
99)	Controlling access to packets is called		, .		utgoing ()
100)	a) IP filtering b) Date What is the benefit	J	,	d) Firewall filtering	()
	a) File sharing c) Easier backup		b) Ease of ac	cess to resources		

ANSWERS KEY

1	2	3	4	5	6	7	8	9	10
а	b	d	С	d	С	а	d	b	b
11	12	13	14	15	16	17	18	19	20
d	С	С	b	b	d	d	d	d	b
21	22	23	24	25	26	27	28	29	30
d	d	d	а	d	d	d	b	С	d
31	32	33	34	35	36	37	38	39	40
а	С	b	а	b	а	а	d	d	d
41	42	43	44	45	46	47	48	49	50
d	а	а	а	С	а	а	b	а	а
51	52	53	54	55	56	57	58	59	60
d	а	С	d	d	b	d	а	а	а
61	62	63	64	65	66	67	68	69	70
а	а	b	а	d	а	С	b	С	а
71	72	73	74	75	76	77	78	79	80
d	а	d	d	а	С	d	d	d	а
81	82	83	84	85	86	87	88	89	90
а	а	а	а	а	а	b	а	С	С
91	92	93	94	95	96	97	98	99	100
С	С	а	а	d	а	а	а	С	d

ST-65: STORES, TENDERS & CONTRACTS

1)	Function of an item rer a) Increase c) Remains Constant	naining constant, If t	he cost decreases, I b) Decrease d) May increase or		()
2)	In order to avoid any ca) More than lead time c) Does not have any i	requirement	re-order level has to b) Less than lead tin d) Equal to lead tim	me requireme)
3)	Stores directorate in R a) Member (Material M c) Member (Elec)	•	er b) Member (Staff) d) Financial Commi	ssioner	()
4)	Economic order quanti a) Demand & Supply c) Budget and Service		ned by optimising be b) Ordering cost an d) User and Accour	d carrying con)
5)	Forecasting accuracy ia) Shorter	increases if the planr b) Longer	ning period is c) Zero	d) Infinity	()
6)	Ambiguity in description on lead time a) It will increase c) It will remain same	n and specification o	of material will have to b) It will decrease d) None of the abov	_	ffect ()
7)	For a stores declared sa) Not to be accepted b) To be sent to any of c) are to be accepted bd) a high level committee.	ther depot where the out credit is given on	y are required ly as scrap value	re	()
8)	In Indian Railways, Opmore than a) 20 lakhs	en tender is adopted b) 40 lakhs	d when the purchase c) 25 lakhs	value is d) 10 lakhs	()
9)	Indian Railways stores a) 2	code is in how man b) 3	y volumes c) 4	d) 5	()
10)	The pre-check of the p if the value is more that a) 80,000		counts department is	d) 8,00,000	()
11)	Special Limited Tende a) Number of firms is c b) Purchase value is h c) Purchase must be re d) Tender is issued by	one igh but limited tende estricted from few fir			()

12)	codification of stores items	cation is followed in indian Railways for	()
	a) Fully significant coding systemc) Non significant coding system	b) Semi significant coding systed) Color codification coding system		,
13)	In Indian Railways, the case is to is a case of a) Open tender c) Limited tender	be dealt with the tender committee, wher b) Limited tender d) High value tender above 10 lakhs	ı it ()
14)	When a firm is selected and tender a) Open tender c) Bulletin tender	er enquiry is sent to them, it is a case of b) Limited tender d) Global tender	()
15)	In Indian Railways, "A" category it consumption value a) 50% b) 60%	tem represents what percentage of total c) 70% d) 90%	()
16)	EOQ is the quantity at which a) Inventory carrying cost is maxin b) Warehousing cost is minimum c) Inventory carrying cost + order d) Inventory carrying cost + order	ing cost is maximum	()
17)	In a rate contract a) Quantity is not specified b) Delivery period is not specified c) Rough estimate of quantity is g d) Quantity to be supplied is fixed	iven	()
18)	System of recoupment to be follow a) Maxima-Minima c) Base stock	wed for recouping emergency stores is _ b) Periodic review d) Combination of A & B above	_ ()
19)	Tenders are to be invited for purce each. In this case we invite a) Open tender c) Single tender	hase of 12000 numbers of chokes at Rs. b) Limited tender d) Bulleten tender	90/-)
20)	In a PL No., the first two digits ind a) Main Group c) S.No of the item	licate b) Sub Group d) Check digit	()
21)	In a P.L No, the subgroup to whic a) First two digits c) 5 th & 6th digits	h an item belong to is represented by b) 3rd & 4th digits d) 2nd & 3rd digits	()

22)	An item was not issued to any user for	•	likely to be	
	issued in the next 22 months. This item		()
	a) Dead surplus	b) Custody stores		
	c) Movable surplus	d) imprest stores		
23)	In "ABC" analysis, "A"category item re	oresents	()
,	a) Low consumption value item	b) Important item	`	,
	c) High annual consumption value iter	n d) high cost item		
24)	Buffer stock limit depend on		()
- ')	a) ABC classification of the item		(,
	b) VDE classification of the item			
	c) Combination of ABC & VED classific	cation of the item		
	d) Stock & Non Stock classification of t			
25)	Buffer stock is provided		(١
20)	a) To meet unforeseen requirement		(,
	b) To supply items to other users			
	c) To make good, short fall due to theft	deterioration etc		
	d) To have items out of stock	,		
26)	Stock of an item with a section engine	er is 500 Nos. Sanctioned im	nrest of the	
20)	item is 1500 Nos. Quantity of the item		•)
	a) 1500 Nos b) 1000 Nos	•	2000 Nos	,
27\	,	2,000	(`
21)	In V- E- D analysis, V stands for a) Vague items	b) Vital items	()
	c) Very important items	d) Very costly items		
	, •	,	,	
28)	Indication of value in the demand is ne	•	()
	a) For posting in Liability/Posting regist			
	b) To know the appropriate approving ac) For payment to the supplier	aumonty		
	d) Combination of (a) & (b)			
00)	, , , ,			
29)	Item not required for the purpose for w	nich it was originally purchas	sea is known	`
	as	b) Scrap item	()
	a) Inactive itemc) Over stock item	d) Emergent stock item		
	,			
30)	For an item having annual consumptio			
	respectively 12 months and 8 months of		of this item on	`
	a) 01.01.19 b) 10.02.19		(01.04.19)
	,	,		
31)	An item having regular turnover cause	•	known as()
	,	Emergent stock item		
	c) Regular item d)	Non stock item		

3	a) Is u b) Mo c) No	unservisa re than 3 t been iss	are those ble months sued to a the requir	old ny user fo	or the las	t 12 mon	ths			()	
3	a) Ch b) Co c) Prii	ief Mater ntroller o ncipal Ch	of stores ial Manao f Stores iief Mater oller of St	ger ial Mana	ger		ilway is			()	
34	4) Repre openi		es of the	tenderers	s are allo	wed to be	e present	at the tir	me of	()	
		en tende lletin tend	=			,	gle tende en or spe		ed tender		
3	a) Est	timated v	tender ca alue of po case as	urchase		b) Valu	ue of the	case as	per highe	() st offer	
c) Value of the case as per lowest offer d) None of the above 36) Only one offer received in respect of limited/open tender is known as a) Single tender b) PAC Offer c) Single offer d) late offer						()					
3	from a) Sin	ietary art igle firm o proved fir	-	icate is is	sued for	b) RDS	required to SO approse	ved firms		()	
38	a) Ad		ired by th for returi note				luisition ent			()	
39	9) Advic a) S1		r returned I	d stores i o) S1605		in the for c) S16		d) N	lone of th	() ne above	
				<u>A N</u>	ISWE	RS K	ΕY				
	1	2	3	4	5	6	7	8	9	10]
	а										
	11	12	13	14	15	16	17	18	19	20	4
	b	b	d	С	С	d	а	С	а	а	
-	21	22	23	24	25	26	27	28	29	30	$\frac{1}{1}$
-	b	C	C	C	a	b	b	d	b	C 40	4
	31 a	32 c	33 c	34 a	35 a	36 c	37 a	38 a	39 a	40	1
	ч			u	u		u	l u	, u	1	1

RAJBASHA

	1)	What is the Official La	nguage of Union of I	ndia?		()
		a) English		b) Urdu			
		c) Telugu		d) Hindi in Devanag	jari Script		
	2)	As per Article 343(1) of the Union of India	of the constitution wh	en Hindi became the	e official langu	age ()
		a) 26.01.1963	b) 26.01.1964	c) 26.01.1965	d) 26.01.1966	5	,
	3)	When the Constitution Eighth Schedule	was adopted, how n	nany languages wer	e included init	ially in t	the
		a) 11	b) 14	c) 15	d) 16	•	,
	4)	When was Official Lan	nguage Act 1963 pas	sed		()
		a) 10.05.1963	b) 10.04.1963	c) 10.065.1963	d) 11.05.196	3	
	5)	When did the section 3	•			()
		a) 25 .01.1963	b) 26.01.1963	c) 26.01.1965	d) 14.01.196	5	
	6)	When was the official a) 1965	Language Act, 1963 b) 1966	was amended c) 1967	d) 1968	()
	7)	When was Official Lan a) 1963	iguages Rules passe b) 1964	ed c) 1973	d) 1976	()
	8)	When was Official Lan	nguages Rules amen	ded		()
		a) 1987	b) 1988	c) 1963	d) 1965		
	9)	Into how many Region	ıs Indian states have	been classified, acc	ording to offic	ial	
		Languages Rules a) 2	b) 3	c) 4	d) 5	()
1	10)	What are all the 3 Reg	jions as classified un b) B & C	der Official Languag c) A & C	es Rules d) A, B & C	()
1	11)	When "Hindi Day" is co a) 14 th sep	• •	? c) 14 th oct	d) 2 nd sep	()
1	12)	States:(i) Uttar Prades (vi) Himachal Pradesh	. ,	` ,	•	n,	
		Union Territory: (i) And	daman & Nicobar Isla	and, Group N	CT: (i) Delhi	falls un	der
		Region a) A & B	b) B & C	c) A	d) B	()

13)	States: (i) Maha Union Territory:				Dadar and N	agar Ha	veli	falls
	under Region a) A & B	b) B & C	c) A		d) B	()	
14)	States: (i) Karn Odisha (vii) We (xii) Meghalaya Manipur, Territory: (i) Por a) B	st Bengal (vi (xiii) Arunac	ii) Goa (ix) Ja hal Pradesh	ammu and Ka (xiv) Sikkim	shmir (x) Ass (xv) Tripura(am (xi) xvi) Miz	Nagala oram	and
15)	Which Ministry t a) Railways c) Human Reso	·	ant decisions	b) Home d) Culture	Official Langu	ıage	()
16)	In which year th compliance of F a) 1947	•	rder	was created i c) 1952	n Railway Boa d) 1		()
17)	Who was the Raprepared in the a) Shri Lal Bahac) Smt Indira Ga	year 1956 adur Shastri	er when the	b) Shri Jaw	ition of Railwa /harlal Nehru zarilal Nanda	y Budg	et was ()
18)	Who is the Cha a) President c) External affai		ntral Hindi Sa	nmiti (Committ b) Home m d) Prime M	ninister		()
19)	The Central Hin	•	ommittee) co ailways	mes under wh	_	ulture	()
20)	After Independe Government Sta a) external affai	aff in Hindi	which Minis	try was entrus c) home	•	f trainin	g Cent (ral)
21)	How many men Language a) 10	nbers are the	ere in the Pa	rliamentary C d) 35	ommittee on (Official	()

22)	How many Lok	Sabha	membe	rs a	re there i	in th	ne Parliamentary	Committee or	า	
	Official Languaç	ge							()
	a) 10	b) 20	(c) 3	30	d)	32			
23)	How many Rajy	⁄a Sabl	ha meml	ers	are ther	e in	the Parliamenta	ry Committee	on Off	icial
	Language								()
	a) 5	b) 7	(2) 8	3	d)	10			
24)	At present, how	many	Sub-Co	mm	ittees are	the	ere in the Parliam	entary Comm	nittee	
	on Official Lang	_							()
	a) 3	b) 7	(2) 8	3	d)	10			
25)	Which Sub-Con	nmittee	e of Parli	ame	entary Co	mm	nittee on Official I	₋anguage		
	inspects the offi								()
	a) 1 st	b) 2 nd	d	c) (314	d)	none			
26)	What is the peri	iodicity	of the m	eet	tings of O)ffici	al Language Imp	lementation (Commit	ttee
	is once in								()
	a) 1		b) 2			c)	3	d) 6		
27)	Which Ministry	prepar	es Annu	al P	rograms	on	Official Language)	()
	a) Railways		b) Hom	е		c) l	Defense	d) Broad cas	ting	
28)	The Question P	apers	of depar	tme	ental exan	nina	ation must be pro	vided in whicl	h langu	ıage
									()
	a) Hindi		b) Regi	ona	ıl	c) ı	no such norms	d) Hindi & Er	nglish	
29)	How many Hind	li cours	ses are p	res	cribed fo	r Ce	entral Govt. empl	oyees	()
	a) Prabodh		b) Prav	een)	c) l	Pragya and Para	ngat	d) All	
30)	Which is the ele	ementa	ry Hindi	cou	ırse preso	crib	ed for Central Go	vt. employee	s()
	a) Pragya		b) Prav	een	1	c) l	Prabodh	d) Parangat		
31)	Which is the fina	al Hind	li course	pre	escribed f	or C	Central Govt. emp	oloyees	()
	a) Pragya		b) Prav	een	1	c) l	Prabodh	d) Parangat		
32)	What are all the	trainir	ng faciliti	es a	available	to a	Central Govt. E	mployee to		
	get trained in th	ese Hi	ndi cour	ses					()
	a) All b) Reg	gular	c) Inten	sive	е	d)	Correspondence	& Private		
33)	What is the dura	ation o	f each H	indi	course?	(Ех	cept Intensive Tr	raining)	()
	a) 2 months		b) 3 mc				5 months	d) 6 months		

34)	now many times minu	i examinations (exce	pi intensive Training) are conduct	eu	
	in a year				()
	a) 1	b) 2	c) 3	d) 4		
35)	What are all the month a) April & September c) May & November	ns in which Hindi exa	minations are usuall b) May & October d) June & Decemb		()
36)	In how many working of Training a) 20	days Prabodh course b) 25	e is conducted under c) 30	Intensive d) 35	()
37)	In how many Working Training a) 20	days Praveen cours b) 25	e is conducted unde	r Intensive d) 35	()
38)	In how many working of Training a) 7	days Pragya course i b) 10	is conducted under I c) 15	ntensive d) 20	()
39)	When will an employed Examinations a) get above 35% in w c) get above 55% in w	ritten	Cash Award after p b) get above 45% ir d) get above 60% ir	n written	()
40)	What is the amount of than 95% of marks a) Rs 400	Cash Award for Pas b)) Rs 600	sing Hindi Typing wi	th 90% or mo d) Rs 1200	re but l	ess)
41)	What are all the incent a) Cash Award c) a & b	ives given for passin b) Lumpsum Award d) None		S	()
42)	What is the amount of 60% of marks a) Rs 400	Cash Award for Pas b) Rs 450	sing Prabodh with 59	5% or more b d) Rs 550	ut less [·]	than)
43)	What is the amount of than 70% of marks a) Rs 750	Cash Award for Pas b) Rs 800	sing Prabodh with 60	0% or more b	out less ()

44) \	What is th	ie amour	t of Cash	n Award f	or Passii	ng Prabo	dh with 7	0% or m	ore mark	ks (
a	a) Rs 120	0	b) Rs 1	400	c) R	s 1600	d) Rs 1800	0		
•	What is th		t of Cash	n Award f	or Passii	ng Prave	en with 5	5% or mo	ore but le	,	n .
	60% of ma a) Rs 200		b) Rs 4	100	c) R	s 600	ď) Rs 800		()
•	What is th		it of Cash	n Award f	or Passii	ng Prave	en with 6	0% or mo	ore but le		
	a) Rs 120		b) Rs 1	300	c) R	s 1500	C	I) Rs 170	0	()
,	What is th					· ·				s ()
8	a) Rs 120	0	b) Rs 1	400	c) R	s 1600	ď) Rs 1800	0		
,	What is th			n Award f	or Passii	ng Pragya	a with 55	% or mor	re but		
	ess than				` _			. =	_	()
8	a) Rs 400		b) Rs 6	600	c) R	s 800	d) Rs 1200	0		
49) V	What is th	e amour	t of Cash	n Award f	or Passii	ng Pragya	a with 60	% or mor	re but		
I	ess than	70% of n	narks							()
8	a) Rs 140	0	b) Rs 1	600	c) R	s 1800	ď) Rs 2400	0		
50) V	What is th	e amour	t of Cash	n Award f	or Passii	ng Pragya	a with 70	% or mor	re marks	()
a	a) Rs 240	00	b) Rs	1800	c) F	Rs 1600	d) Rs 1200	0		
				<u>A</u>	NSWI	ERS	KEY				
	1	2	3	4	5	6	7	8	9	10	
	d	С	b	а	С	С	d	а	b	d	

1	2	3	4	5	6	7	8	9	10
d	С	b	а	С	С	d	а	b	d
11	12	13	14	15	16	17	18	19	20
а	С	d	b	b	С	а	d	С	b
21	22	23	24	25	26	27	28	29	30
С	b	d	а	b	С	b	d	d	С
31	32	33	34	35	36	37	38	39	40
а	а	d	b	С	b	а	С	С	С
41	42	43	44	45	46	47	48	49	50
С	а	b	С	d	а	d	С	b	а